Nonlinear Dynamics

, Volume 67, Issue 2, pp 1201–1219 | Cite as

Nonlinear dynamics of one disk asymmetrical rotor supported by two journal bearings

  • K. V. Avramov
  • O. V. Borysiuk
Original Paper


Asymmetrical one disk rotor interacting with fluid films of short journal bearings is considered. Gyroscopic moments acting on a disk are taken into account. The forces of the journal bearing fluid film are derived analytically. The system of four nonlinear ordinary differential equations is obtained to study the rotor vibrations. The origination of self-sustained vibrations of rotor is studied by means of Shaw–Pierre nonlinear modes. The harmonic balance method is applied to study the self-sustained vibrations with large amplitudes.


Fluid film Reynolds’ equation Self-sustained vibrations Nonlinear modes Frequency response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, X.Y.: On site testing and analysis of the oil whirl phenomena in national made 200 MW stream turbine generator systems. Power Ind. 12, 32–37 (1992) Google Scholar
  2. 2.
    Akers, A.: Pressure due inertia in a journal bearing. J. Mech. Eng. Sci. 1, 17–25 (1969) Google Scholar
  3. 3.
    Safar, M.Z.S., Szeri, A.Z.: Research note: a variational solution of the 120-degree partial journal bearing. J. Mech. Eng. Sci. 3, 3–15 (1972) Google Scholar
  4. 4.
    Poznjak, E.L.: Dynamical properties of journal bearing oil film. Izv. Akad. Nauk SSSR, Mech. Mech. Eng. 14, 65–80 (1961) (in Russian) Google Scholar
  5. 5.
    Olimpiev, V.I.: Eigenfrequencies of rotor-bearing system. Izv. Akad. Nauk SSSR, Mech. Mech. Eng. 3, 19–27 (1960) (in Russian) Google Scholar
  6. 6.
    Tondl, A.: Some problems of self-excited vibration of rotors. Monographs and Memoranda of the National Research Institute for Machine Design, No. 17 (1974) Google Scholar
  7. 7.
    Karintsev, I.B., Shul’genko, N.G.: Static and dynamic properties of short journal bearing oil film. Din. Prochn. Mash. 16, 109–114 (1974) (in Russian) Google Scholar
  8. 8.
    Karintsev, I.B., Shul’genko, N.G.: On effect of inertia of oil film on stability of rotors in short journal bearing. Din. Prochn. Mash. 24, 15–19 (1974) (in Russian) Google Scholar
  9. 9.
    Filippov, A.P., Shul’genko, N.G.: Stability of vibrations of loaded rotors in short journal bearing. Mashinovedenie 4, 21–28 (1973) (in Russian) Google Scholar
  10. 10.
    Ovcharova, D.K., Goloskokov, E.G.: Forced vibrations of rotors in journal bearings. Sov. Appl. Mech. 11, 43–54 (1976) Google Scholar
  11. 11.
    Muszynska, A.: Whirl and whip-rotor/bearing stability problems. J. Sound Vib. 110, 443–462 (1986) CrossRefGoogle Scholar
  12. 12.
    Muszynska, A.: Stability of whirl and whip in rotor/bearing systems. J. Sound Vib. 127, 49–64 (1988) CrossRefGoogle Scholar
  13. 13.
    Legrand, M., Jiang, D., Pierre, C., Shaw, S.W.: Nonlinear normal modes of a rotating shaft based on the Invariant Manifold Method. Int. J. Rotating Mach. 10, 319–335 (2004) CrossRefGoogle Scholar
  14. 14.
    Zheng, T., Hasebe, N.: Nonlinear dynamic behaviors of complex rotor-bearing system. J. Appl. Mech. 67, 485–495 (2000) CrossRefMATHGoogle Scholar
  15. 15.
    Ping, J.J., Guang, M., Yi, S., Song Bo, X.: On the nonlinear dynamic behavior of a rotor-bearing system. J. Sound Vib. 274, 1031–1044 (2004) CrossRefGoogle Scholar
  16. 16.
    Zheng, T., Yang, S., Xiao, Z., Zhang, W.: A Ritz model of unsteady oil-film forces for nonlinear dynamic rotor-bearing system. J. Appl. Mech. 71, 219–224 (2004) CrossRefMATHGoogle Scholar
  17. 17.
    Ding, Q., Leung, A.Y.T.: Non-stationary processes of rotor/bearing system in bifurcations. J. Sound Vib. 268, 33–48 (2003) CrossRefGoogle Scholar
  18. 18.
    Liu, H., Yu, L., Xie, Y.B., Yao, F.S.: The continuous Poincare-like cell method and its application to nonlinear dynamics analysis of a bearing-rotor system. Tribol. Int. 31, 369–375 (1998) CrossRefGoogle Scholar
  19. 19.
    Chen, C.-L., Yan, H.-T.: Chaos in inbalance response of flexible rotor supported by oil film bearing with nonlinear suspension. Nonlinear Dyn. 16, 71–90 (1998) CrossRefMATHGoogle Scholar
  20. 20.
    Adiletta, G., Guido, A.R., Rossi, C.: Nonlinear dynamics of a rigid unbalanced rotor in journal bearing. Theor. Anal. Nonlin. Dyn., Part I 14, 57–87 (1997) MATHGoogle Scholar
  21. 21.
    Adiletta, G., Guido, A.R., Rossi, C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10, 251–269 (1996) CrossRefGoogle Scholar
  22. 22.
    Inayat-Hussain, J.I., Mureithi, N.W.: Transitions to chaos in squeeze-film dampers. Commun. Nonlin. Sci. Numer. Simul. 11, 721–744 (2006) CrossRefMATHGoogle Scholar
  23. 23.
    Bonello, P., Brennan, M.J., Holmes, R.: Nonlinear modeling of rotor dynamic system with squeeze film dampers–an efficient integrated approach. J. Sound Vib. 249, 743–773 (2002) CrossRefGoogle Scholar
  24. 24.
    Chang-Jian, C.-W., Chen, C.-K.: Chaos and bifurcation of a flexible rotor supported by porous squeeze couple stress fluid film journal bearings with non-linear suspension. Chaos Solitons Fractals 14, 250–268 (2006) Google Scholar
  25. 25.
    Cheng, M., Meng, G., Jing, J.: Numerical and experimental study of a rotor-bearing-seal system. Mech. Mach. Theory 42, 1043–1057 (2007) CrossRefMATHGoogle Scholar
  26. 26.
    Chang-Jian, C.-W., Chen, C.-K.: Chaos and bifurcation of a flexible rub-impact rotor supported by oil film bearings with nonlinear suspension. Mech. Mach. Theory 42, 312–333 (2007) CrossRefMATHGoogle Scholar
  27. 27.
    Chang-Jian, C.-W., Chen, C.-K.: Nonlinear dynamic analysis of a flexible rotor supported by micropolar fluid film journal bearings. Int. J. Eng. Sci. 44, 1050–1070 (2006) CrossRefMATHGoogle Scholar
  28. 28.
    Chang-Jian, C.-W., Chen, C.-K.: Chaos of rub-impact rotor supported by bearings with nonlinear suspension. Tribol. Int. 42, 426–439 (2009) CrossRefGoogle Scholar
  29. 29.
    Chang-Jian, C.-W., Chen, C.-K.: Non-linear dynamic analysis of rub-impact rotor supported by turbulent journal bearings with non-linear suspension. Int. J. Mech. Sci. 50, 1090–1113 (2008) CrossRefGoogle Scholar
  30. 30.
    Laha, S.K., Kakoty, S.K.: Non-linear dynamic analysis of a flexible rotor supported on porous oil journal bearings. Commun. Nonlinear Sci. Numer. Simul. 16, 1617–1631 (2011) CrossRefGoogle Scholar
  31. 31.
    Chu, F., Zhang, Z.: Periodic, quasi-periodic and chaotic vibrations of a rub-impact rotor system supported on oil film bearings. Int. J. Eng. Sci. 35, 963–973 (1997) CrossRefMATHGoogle Scholar
  32. 32.
    Zhao, S., Xu, H., Meng, G., Zhu, J.: Stability and response analysis of symmetrical single-disk flexible rotor-bearing system. Tribol. Int. 38, 749–756 (2005) CrossRefGoogle Scholar
  33. 33.
    Myers, C.J.: Bifurcation theory applied to oil whirl in plain cylindrical journal bearings. J. Appl. Mech. 51, 219–224 (2004) Google Scholar
  34. 34.
    Avramov, K.V.: Asymptotic analysis of the forced vibrations of a one disk rotor on a nonlinear flexible base. Proceedings of Institution of Mechanical Engineers. Part C. J. Mech. Eng. Sci. 224(C8), 1593–1605 (2010) Google Scholar
  35. 35.
    Mikhlin, Yu., Avramov, K.V.: Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments. Appl. Mech. Rev. (to be submitted) Google Scholar
  36. 36.
    Avramov, K.V., Mikhlin, Yu.: Snap-through truss as an absorber of forced oscillations. J. Sound Vib. 29, 705–722 (2006) CrossRefGoogle Scholar
  37. 37.
    Avramov, K.V., Pierre, C., Shiraeva, N.: Flexural-flexural-torsional nonlinear vibrations of pre-twisted rotating beams with asymmetric cross section. J. Vib. Control 13, 329–370 (2007) CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Avramov, K.V., Mikhlin, Yu.V., Kurilov, E.: Asymptotic analysis of nonlinear dynamics of simply supported cylindrical shells. Nonlinear Dyn. 47, 331–352 (2006) CrossRefMathSciNetGoogle Scholar
  39. 39.
    Kochurov, R., Avramov, K.V.: Nonlinear modes and traveling waves of parametrically excited cylindrical shells. J. Sound Vib. 329, 2193–2204 (2010) CrossRefGoogle Scholar
  40. 40.
    Shaw, S.W., Pierre, C.: Normal modes for nonlinear vibratory systems. J. Sound Vib. 164, 58–124 (1993) CrossRefMathSciNetGoogle Scholar
  41. 41.
    Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Nonstationary Vibrations, Podgorny Institute for Mechanical Engineering ProblemsNational Academy of Sciences of UkraineKharkivUkraine
  2. 2.Department of Gas and Fluid MechanicsNational Technical University “KhPI”KharkivUkraine

Personalised recommendations