Skip to main content

Advertisement

Log in

On forced oscillations of a simple model for a novel wave energy converter

Non-resonant instability, limit cycles, and bounded oscillations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of a simple model for an ocean wave energy converter is discussed. The model for the converter is a hybrid system consisting of a pair of harmonically excited mass–spring–dashpot systems and a set of four state-dependent switching rules. Of particular interest is the response of the model to a wide spectrum of harmonic excitations. Partially because of the piecewise-smooth dynamics of the system, the response is far more interesting than the linear components of the model would suggest. As expected with hybrid systems of this type, it is difficult to establish analytical results, and hence, with the assistance of an extensive series of numerical integrations, an atlas of qualitative results on the limit cycles and other forms of bounded oscillations exhibited by the system is presented. In addition, the presence of unstable limit cycles, the stabilization of the unforced system using low-frequency excitation, the peculiar nature of the response of the system to high-frequency excitation, and the implications of these results on the energy harvesting capabilities of the wave energy converter are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P., Nordmark, A.B., Olivar Tost, G., Piiroinen, P.T.: Bifurcations in nonsmooth dynamical systems. SIAM Rev. 50(4), 629–701 (2008). doi:10.1137/050625060

    Article  MathSciNet  MATH  Google Scholar 

  2. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, London (2008)

    MATH  Google Scholar 

  3. Flieller, D., Riedinger, P., Louis, J.P.: Computation and stability of limit cycles in hybrid systems. Nonlinear Anal., Theory Methods Appl. 64(2), 352–367 (2006). doi:10.1016/j.na.2005.06.054

    Article  MathSciNet  MATH  Google Scholar 

  4. Goebel, R., Sanfelice, R., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009). doi:10.1109/MCS.2008.931718

    Article  MathSciNet  Google Scholar 

  5. Gonçalves, J.M.: Regions of stability for limit cycle oscillations in piecewise linear systems. IEEE Trans. Autom. Control 50(11), 1877–1882 (2005). doi:10.1109/TAC.2005.858674

    Article  Google Scholar 

  6. Halse, C.K., Wilson, R.E., di Bernardo, M., Homer, M.E.: Coexisting solutions and bifurcations in mechanical oscillators with backlash. J. Sound Vib. 305(4–5), 854–885 (2007). doi:10.1016/j.jsv.2007.05.010

    Article  MathSciNet  Google Scholar 

  7. Hiskens, I.A.: Stability of hybrid system limit cycles: application to the compass gait biped robot. In: Proceedings of the 40th IEEE Conference on Decision and Control, vol. 1, pp. 774–779 (2001). doi:10.1109/.2001.980200

    Google Scholar 

  8. Hiskens, I.A., Reddy, P.B.: Switching-induced stable limit cycles. Nonlinear Dyn. 50(3), 575–585 (2007). doi:10.1007/s11071-006-9175-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Kessler, P., O’Reilly, O.M.: The ringing of Euler’s disk. Regul. Chaotic Dyn. 7(1), 49–60 (2002). doi:10.1070/RD2002v007n01ABEH000195

    Article  MathSciNet  MATH  Google Scholar 

  10. Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: On the transient dynamics of a multi-degree-of-freedom friction oscillator: A new mechanism for disc brake noise. J. Sound Vib. 287(4–5), 901–917 (2005). doi:10.1016/j.jsv.2004.12.005

    Article  Google Scholar 

  11. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. In: Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004)

    MATH  Google Scholar 

  12. Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  13. Liberzon, D., Morse, S.A.: Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19, 59–70 (1999). doi:10.1109/37.793443

    Article  Google Scholar 

  14. Orazov, B., O’Reilly, O.M., Savaş, O.: On the dynamics of a novel ocean wave energy converter. J. Sound Vib. 329(24), 5058–5069 (2010). doi:10.1016/j.jsv.2010.07.007

    Article  Google Scholar 

  15. Rubensson, M., Lennartson, B.: Stability of limit cycles in hybrid systems using discrete-time Lyapunov techniques. In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 2, pp. 1397–1402 (2000). doi:10.1109/CDC.2000.912053

    Google Scholar 

  16. Rubensson, M., Lennartson, B.: Global convergence analysis for piecewise linear systems applied to limit cycles in a DC/AC converter. In: Proceedings of the American Control Conference, vol. 2, pp. 1272–1277 (2002). doi:10.1109/ACC.2002.1023195

    Google Scholar 

  17. van der Schaft, A.J., Schumacher, J.M.: An Introduction to Hybrid Dynamical Systems. In: Lecture Notes in Control and Information Sciences, vol. 251. Springer, London (2000). doi:10.1007/BFb0109998

    MATH  Google Scholar 

  18. Thota, P., Dankowicz, H.: TC-HAT \((\widehat{\mathrm{TC}})\): A novel toolbox for the continuation of periodic trajectories in hybrid dynamical systems. SIAM J. Appl. Dyn. Syst. 7(4), 1283–1322 (2008). doi:10.1137/070703028

    Article  MathSciNet  MATH  Google Scholar 

  19. Wirkus, S., Rand, R., Ruina, A.: How to pump a swing. Coll. Math. J. 29(4), 266–275 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver M. O’Reilly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orazov, B., O’Reilly, O.M. & Zhou, X. On forced oscillations of a simple model for a novel wave energy converter. Nonlinear Dyn 67, 1135–1146 (2012). https://doi.org/10.1007/s11071-011-0058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0058-7

Keywords

Navigation