Skip to main content
Log in

Modeling and analysis of piezoaeroelastic energy harvesters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work investigates the influence of structural and aerodynamic nonlinearities on the dynamic behavior of a piezoaeroelastic system. The system is composed of a rigid airfoil supported by nonlinear torsional and flexural springs in the pitch and plunge motions, respectively, with a piezoelectric coupling attached to the plunge degree of freedom. The analysis shows that the effect of the electrical load resistance on the flutter speed is negligible in comparison to the effects of the linear spring coefficients. The effects of aerodynamic nonlinearities and nonlinear plunge and pitch spring coefficients on the system’s stability near the bifurcation are determined from the nonlinear normal form. This is useful to characterize the effects of different parameters on the system’s output and ensure that subcritical or “catastrophic” bifurcation does not take place. Numerical solutions of the coupled equations for two different configurations are then performed to determine the effects of varying the load resistance and the nonlinear spring coefficients on the limit-cycle oscillations (LCO) in the pitch and plunge motions, the voltage output and the harvested power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)

    Article  Google Scholar 

  2. Sodano, H., Park, G., Inman, D.J.: A Review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–205 (2004)

    Article  Google Scholar 

  3. Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19, 167–184 (2007)

    Article  Google Scholar 

  4. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)

    Article  Google Scholar 

  5. Abdelkefi, A., Najar, F., Nayfeh, A.H., Ben Ayed, S.: An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations. Smart Mater. Struct. (2010) (submitted)

  6. Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osorio, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20, 545–557 (2007)

    Article  Google Scholar 

  7. Arnold, D.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43, 3940–3951 (2007)

    Article  Google Scholar 

  8. Mitcheson, P., Miao, P., Start, B., Yeatman, E., Holmes, A., Green, T.: MEMS electrostatic micro-power generator for low frequency operation. Sens. Actuators A, Phys. 115, 523–529 (2004)

    Article  Google Scholar 

  9. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, R1–21 (2007)

    Article  Google Scholar 

  10. Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)

    Article  Google Scholar 

  11. De Marqui, C., Erturk, A., Inman, D.J.: Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes. J. Intell. Mater. Syst. Struct. 21, 983–993 (2010)

    Article  Google Scholar 

  12. Bryant, M., Garcia, E.: Energy harvesting: a key to wireless sensor nodes. Proc. SPIE 7493 (2009). doi:10.1117/12.845784

  13. Bryant, M., Garcia, E.: Development of an aeroelastic vibration power harvester. Proc. SPIE 7288 (2009). doi:10117/12.815785

  14. Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96, 184103 (2010)

    Article  Google Scholar 

  15. Dowell, E.H., Tang, D.: Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J. 40, 1697–1707 (2002)

    Article  Google Scholar 

  16. Gilliat, H.C., Strganac, T.W., Kurdila, A.J.: An investigation of internal resonance in aeroelastic systems. Nonlinear Dyn. 31 (2003)

  17. Raghothama, A., Narayanan, S.: Non-linear dynamics of a two-dimensional air foil by incremental harmonic balance method. J. Sound Vib. 226, 493–517 (1999)

    Article  Google Scholar 

  18. Liu, L., Wong, Y.S., Lee, B.H.K.: Application of the centre manifold theory in non-linear aeroelasticity. J. Sound Vib. 234, 641–659 (2000)

    Article  MathSciNet  Google Scholar 

  19. Strganac, T.W., Ko, J., Thompson, D.E., Kurdila, A.J., Identification and control of limit-cycle oscillations in aeroelastic systems. In: Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, St. Louis, MO, vol. 3, pp. 99–1463 (1999)

    Google Scholar 

  20. Nayfeh, A.H.: Method of Normal Forms. Wiley Interscience, New York (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Hajj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelkefi, A., Nayfeh, A.H. & Hajj, M.R. Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn 67, 925–939 (2012). https://doi.org/10.1007/s11071-011-0035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0035-1

Keywords

Navigation