Nonlinear Dynamics

, Volume 65, Issue 3, pp 301–310 | Cite as

Dynamics on certain sets of stochastic matrices

  • C. Correia Ramos
  • Nuno Martins
  • A. Nascimento Baptista
Original Paper


We study iteration of polynomials on symmetric stochastic matrices. In particular, we focus on a certain one-parameter family of quadratic maps which exhibits chaotic behavior for a wide range of the parameters. The well-known dynamical behavior of the quadratic family on the interval, and its dependence on the parameter, is reproduced on the spectrum of the stochastic matrices. For certain subclasses of stochastic matrices the referred dynamical behavior is also obtained in the matrix entries. Since a stochastic matrix characterizes a Markov chain, we obtain a discrete dynamical system on the space of reversible Markov chains. Therefore, depending on the parameter, there are initial conditions for which the corresponding reversible Markov chains will lead under iteration to a fixed point, to a periodic point, or to an aperiodic point. Moreover, there are sensitivity to initial conditions and the coexistence of infinite repulsive periodic orbits, both features of chaos.


Matrix dynamics Stochastic matrices Iterated interval maps Reversible Markov chains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics, vol. 9. SIAM, Philadelphia (1994). Revised reprint of the 1979 original MATHGoogle Scholar
  2. 2.
    Correia Ramos, C., Martins, N., Sousa Ramos, J.: Finite dimensional representations of ∗-algebras arising from a quadratic map. Chaos Solitons Fractals 34(4), 1202–1212 (2007). doi: 10.1016/j.chaos.2006.03.113 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Falconer, K.: Techniques in Fractal Geometry. Wiley, Chichester (1997) MATHGoogle Scholar
  4. 4.
    Guckenheimer, J.: Sensitive dependence to initial conditions for one-dimensional maps. Commun. Math. Phys. 70(2), 133–160 (1979). MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Lampreia, J.P., Rica da Silva, A., Sousa Ramos, J.: Subtrees of the unimodal maps tree. Boll. Un. Mat. Ital. C (6) 5(1), 159–167 (1987) (1986) MathSciNetGoogle Scholar
  6. 6.
    Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Annals of Mathematics Studies, vol. 160. Princeton University Press, Princeton (2006) MATHGoogle Scholar
  7. 7.
    Nascimento Baptista, A., Correia Ramos, C., Martins, N.: Difference equations on matrix algebras. In: Proceedings of the International Conference on Difference Equations and Applications, ICDEA07, Lisbon (2007) Google Scholar
  8. 8.
    Serenevy, A.K.: Dynamics of polynomial maps of 2×2 real matrices. In: Proceedings of the 16th Summer Conference on General Topology and Its Applications, New York, vol. 26, pp. 763–778 (2001/2002) Google Scholar
  9. 9.
    Sharkovsky, A.N., Kolyada, S.F., Sivak, A.G., Fedorenko, V.V.: Dynamics of One-dimensional Maps. Mathematics and its Applications, vol. 407. Kluwer Academic, Dordrecht (1997). Translated from the 1989 Russian original by Sivak, P. Malyshev and D. Malyshev and revised by the authors MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • C. Correia Ramos
    • 1
    • 2
  • Nuno Martins
    • 3
  • A. Nascimento Baptista
    • 2
    • 4
  1. 1.Department of MathematicsUniversity of ÉvoraÉvoraPortugal
  2. 2.CIMAUniversity of ÉvoraÉvoraPortugal
  3. 3.Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Department of MathematicsInstituto Superior TécnicoLisboaPortugal
  4. 4.Department of Mathematics, ESTGPolytechnic Institute of LeiriaLeiriaPortugal

Personalised recommendations