Advertisement

Nonlinear Dynamics

, Volume 65, Issue 3, pp 255–270 | Cite as

Dynamical properties and simulation of a new Lorenz-like chaotic system

  • Xianyi Li
  • Qianjun Ou
Original Paper

Abstract

This paper formulates a new three-dimensional chaotic system that originates from the Lorenz system, which is different from the known Lorenz system, Rössler system, Chen system, and includes Lü systems as its special case. By using the center manifold theorem, the stability character of its non-hyperbolic equilibria is obtained. The Hopf bifurcation and the degenerate pitchfork bifurcation, the local character of stable manifold and unstable manifold, are also in detail shown when the parameters of this system vary in the space of parameters. Corresponding bifurcation cases are illustrated by numerical simulations, too. The existence or non-existence of homoclinic and heteroclinic orbits of this system is also studied by both rigorous theoretical analysis and numerical simulation.

Keywords

Lorenz-type system Center Manifold Theorem Pitchfork bifurcation Hopf bifurcation Homoclinic and heteroclinic orbit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rubinger, R.M., Nascimento, A.W.M., Mello, L.F., Rubinger, C.P.L., Manzanares Filho, N., lbuquerque, H.A.: Inductorless Chua’s circuit: experimental time series analysis. Math. Probl. Eng. 2007 (2007). doi: 10.1155/2007/83893. [Article ID 83893]
  2. 2.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zhou, T., Chen, G., Tang, Y.: Complex dynamical behaviors of the chaotic Chen’s system. Int. J. Bifurc. Chaos 13, 2561–2574 (2003) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Eberhart, R.C.: Chaos theory for the biomedical engineer. IEEE Eng. Med. Biol. Mag. 3, 41–45 (2002) Google Scholar
  5. 5.
    Alvarez, G., Li, S., Montoya, F., Pastor, G., Romera, M.: Breaking projective chaos synchronization secure communication using filtering and generalized synchronization. Chaos Solitons Fractals 24, 775–783 (2005) MATHCrossRefGoogle Scholar
  6. 6.
    Liu, Y., Yang, Q.: Dynamics of a new Lorenz-like chaotic system. Nonlinear Anal.: Real Word Appl. 11(4), 2563–2572 (2010) MATHCrossRefGoogle Scholar
  7. 7.
    Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002) MATHCrossRefGoogle Scholar
  8. 8.
    Li, C., Chen, G.: A note on Hopf bifurcation in Chen’s system. Int. J. Bifurc. Chaos 13, 1609–1615 (2003) MATHCrossRefGoogle Scholar
  9. 9.
    Li, T., Chen, G., Tang, Y.: On stability and bifurcation of Chen’s system. Chaos Solitons Fractals 19, 1269–1282 (2004) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lü, J., Zhou, T., Chen, G., Zhang, S.: Local bifurcations of the Chen system. Int. J. Bifurc. Chaos 12, 2257–2270 (2002) MATHCrossRefGoogle Scholar
  11. 11.
    Ueta, T., Chen, G.: Bifurcation analysis of Chen’s equation. Int. J. Bifurc. Chaos 10, 1917–1931 (2000) MathSciNetMATHGoogle Scholar
  12. 12.
    Yu, Y., Zhang, S.: Hopf bifurcation in the Lü system. Chaos Solitons Fractals 17, 901–906 (2003) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Yu, Y., Zhang, S.: Hopf bifurcation analysis in the Lü system. Chaos Solitons Fractals 21, 1215–1220 (2004) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Huang, K., Yang, G.: Stability and Hopf bifurcation analysis of a new system. Chaos Solitons Fractals 39, 567–578 (2009) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Vanéeécek, A., Čelikovský, S.: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London (1996) Google Scholar
  16. 16.
    Li, T., Chen, G.: On homoclinic and heteroclinic orbits of Chen’s system. Int. J. Bifurc. Chaos 16, 3035–3041 (2006) MATHCrossRefGoogle Scholar
  17. 17.
    Tigan, G., Constantinescu, D.: Heteroclinic orbits in the T and the Lü systems. Chaos Solitons Fractals 42, 20–23 (2009) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Mello, L.F., Messias, M., Braga, D.C.: Bifurcation analysis of a new Lorenz-like chaotic system. Chaos Solitons Fractals 37, 1244–1255 (2008) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Čelikovsky, S., Chen, G.: On a generalized Lorenz canonical form of chaotic systems. Int. J. Bifurc. Chaos 12, 1789–1812 (2002) MATHCrossRefGoogle Scholar
  20. 20.
    Yang, Q., Chen, G., Zhou, T.: A unified Lorenz-type system and its canonical form. Int. J. Bifurc. Chaos 16, 1855–1871 (2006) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pecora, L.M., Carroll, T.L.: Driving systems with chaotic signals. Phys. Rev. A 44(4), 2374–2383 (1991) CrossRefGoogle Scholar
  22. 22.
    Chua, L.O., Itoh, M., Kovurev, L., Eckert, K.: Chaos synchronization in Chua’s circuits. J. Circuits Syst. Comput. 3, 93–108 (1993) CrossRefGoogle Scholar
  23. 23.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  24. 24.
    Čelikovský, S., Vaĕc̆ek, A.: Bilinear systems and chaos. Kybernetika 30, 403–424 (1994) MathSciNetMATHGoogle Scholar
  25. 25.
    Vaĕc̆ek, A., Čelikovský, S.: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London (1996) Google Scholar
  26. 26.
    Čelikovský, S., Chen, G.: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congrss of IFAC, Barcelona, Spain (2002), in CD ROM Google Scholar
  27. 27.
    Čelikovský, S., Chen, G.: On the generalized Lorenz canonical form. Chaos Solitons Fractals 26, 1271–1276 (2005) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976) CrossRefGoogle Scholar
  29. 29.
    Vanderschrier, G., Maas, L.: The diffusionless Lorenz equations; Šilnikov bifurcations and reduction to an explicit map. Physica D 141, 19–36 (2000) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50(2), R647–R650 (1994) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.College of Mathematics and Computational ScienceShenzhen UniversityShenzhen, GuangdongP.R. China

Personalised recommendations