Advertisement

Nonlinear Dynamics

, Volume 64, Issue 1–2, pp 65–75 | Cite as

Globally exponential stability of periodic solutions for impulsive neutral-type neural networks with delays

  • Xiaohu Wang
  • Shuyong Li
  • Daoyi Xu
Original Paper

Abstract

In this paper, a nonautonomous impulsive neutral-type neural network with delays is considered. By establishing a singular impulsive delay differential inequality and employing contraction mapping principle, several sufficient conditions ensuring the existence and global exponential stability of the periodic solution for the impulsive neutral-type neural network with delays are obtained. Our results can extend and improve earlier publications. An example is given to illustrate the theory.

Keywords

Exponential stability Periodic solution Neutral-type Singular impulsive delay differential inequality Contraction mapping principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhao, H.: Existence and global attractivity of almost periodic solution for cellular neural network with distributed delays. Appl. Math. Comput. 154, 683–695 (2004) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Zhao, H.: Global exponential stability and periodicity of cellular neural networks with variable delays. Phys. Lett. A 336, 331–341 (2005) MATHCrossRefGoogle Scholar
  3. 3.
    Zhao, H., Chen, L., Mao, Z.: Existence and stability of almost periodic solution for Cohen-Grossberg neural networks with variable coefficients. Nonlinear Anal. 9, 663–673 (2008) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Huang, X., Cao, J., Daniel, W.C.: Existence and attractivity of almost periodic solution for recurrent neural networks with unbounded delays and variable coefficients. Nonlinear Dyn. 45, 337–351 (2006) MATHCrossRefGoogle Scholar
  5. 5.
    Wang, L., Gao, Y.: Global exponential robust stability of reaction-diffusion interval neural networks with S-type distributed time-varying delays. Phys. Lett. A 5–6, 342–348 (2006) CrossRefGoogle Scholar
  6. 6.
    Wang, L., Cao, J.: Global robust point dissipativity of interval neural networks with mixed time-varying delays. Nonlinear Dyn. 55, 169–178 (2009) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Wang, L., Zhang, R., Wang, Y.: Global exponential stability of reaction-diffusion cellular neural networks with S-type distributed time delays. Nonlinear Anal. 10, 1101–1113 (2009) MATHCrossRefGoogle Scholar
  8. 8.
    Qiu, J., Cao, J.: Delay-dependent robust stability of neutral-type neural networks with time delays. J. Math. Cont. Sci. Appl. 1, 179–188 (2007) Google Scholar
  9. 9.
    Cao, J., Zhong, S., Hu, Y.: Global stability analysis for a class of neural networks with time varying delays and control input. Appl. Math. Comput. 189, 1480–1490 (2007) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bai, C.: Global stability of almost periodic solutions of Hopfield neural networks with neutral time-varying delays. Appl. Math. Comput. 203, 72–79 (2008) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gui, Z., Ge, W., Yang, X.: Periodic oscillation for a Hopfield neural networks with neutral delays. Phys. Lett. A 364, 267–273 (2007) MATHCrossRefGoogle Scholar
  12. 12.
    Park, J.H., Kwon, O.M., Lee, S.M.: LMI optimization approach on stability for delayed neural networks of neutral-type. Appl. Math. Comput. 196, 236–244 (2008) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Park, J.H., Kwon, O.M., Lee, S.M.: State estimation for neural networks of neutral-type with interval time-varying delay. Appl. Math. Comput. 203, 217–223 (2008) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Park, J.H., Park, C.H., Kwon, O.M., Lee, S.M.: A new stability criterion for bidirectional associative memory neural networks of neutral-type. Appl. Math. Comput. 199, 716–722 (2008) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Park, J.H., Kwon, O.M.: Design of state estimator for neural networks of neutral-type. Appl. Math. Comput. 202, 360–369 (2008) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Rakkiyappan, R., Balasubramaniam, P.: New global exponential stability results for neutral type neural networks with distributed time delays. Neurocomputing 71, 1039–1045 (2008) CrossRefGoogle Scholar
  17. 17.
    Rakkiyappan, R., Balasubramaniam, P.: LMI conditions for global asymptotic stability results for neutral-type neural networks with distributed time delays. Appl. Math. Comput. 204, 317–324 (2008) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989) MATHGoogle Scholar
  19. 19.
    Arbib, M.: Branins, Machines, and Mathematics. Springer, New York (1987) Google Scholar
  20. 20.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs, New Jersey (1998) Google Scholar
  21. 21.
    Xu, D., Yang, Z.: Impulsive delay differential inequality and stability of neural networks. J. Math. Anal. Appl. 305, 107–120 (2005) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Yang, Z., Xu, D.: Impulsive effects on stability of Cohen-Grossberg neural networks with variable delays. Appl. Math. Comput. 177, 63–78 (2006) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Yang, Z., Xu, D.: Existence and exponential stability of periodic solution for impulsive delay differential equations and applications. Nonlinear Anal. 64, 130–145 (2006) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Xu, D., Yang, Z., Yang, Z.: Exponential stability of nonlinear impulsive neutral differential equations with delays. Nonlinear Anal. 67, 1426–1439 (2007) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Weng, A., Sun, J.: Globally exponential stability of periodic solutions for nonlinear impulsive delay systems. Nonlinear Anal. 67, 1938–1946 (2007) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Xia, Y., Cao, J., Cheng, S.: Global exponential stability of delayed cellular neural networks with impulses. Neurocomputing 70, 2495–2501 (2007) CrossRefGoogle Scholar
  27. 27.
    Yang, Y., Cao, J.: Stability and periodicity in delayed cellular neural networks with impulsive effects. Nonlinear Anal. 7, 362–374 (2007) Google Scholar
  28. 28.
    Wang, Q., Liu, X.: Exponential stability of impulsive cellular neural networks with time delay via Lyapunov functionals. Appl. Math. Comput. 194, 86–198 (2007) Google Scholar
  29. 29.
    Gui, Z., Yang, X., Ge, W.: Existence and global exponential stability of periodic solutions of recurrent cellular neural networks with impulses and delays. Math. Comput. Simul. 79, 14–29 (2008) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Benchohra, M., Ouahabi, A.: Some uniqueness results for impulsive semilinear neutral functional differential equations. Georgian Math. J. 9, 423–430 (2002) MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Yangtze Center of MathematicsSichuan UniversityChengduChina
  2. 2.College of Mathematics and Software ScienceSichuan Normal UniversityChengduChina

Personalised recommendations