Nonlinear Dynamics

, Volume 64, Issue 1–2, pp 13–23 | Cite as

Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness

Original Paper


In this paper, a novel fault-tolerant attitude control synthesis is carried out for a flexible spacecraft subject to actuator faults and uncertain inertia parameters. Based on the sliding mode control, a fault-tolerant control law for the attitude stabilization is first derived to protect against the partial loss of actuator effectiveness. Then the result is extended to address the problem that the actual output of the actuators is constrained. It is shown that the presented controller can accommodate the actuator faults, even while rejecting external disturbances. Moreover, the developed control law can rigorously enforce actuator-magnitude constraints. An additional advantage of the proposed fault-tolerant control strategy is that the control design does not require a fault detection and isolation mechanism to detect, separate, and identify the actuator faults on-line; the knowledge of certain bounds on the effectiveness factors of the actuator is not used via the adaptive estimate method. The associated stability proof is constructive and accomplished by the development of the Lyapunov function candidate, which shows that the attitude orientation and angular velocity will globally asymptotically converge to zero. Numerical simulation results are also presented which not only highlight the ensured closed-loop performance benefits from the control law derived here, but also illustrate its superior fault tolerance and robustness in the face of external disturbances when compared with the conventional approaches for spacecraft attitude stabilization control.


Fault tolerant Sliding mode control Attitude stabilization Loss of actuator effectiveness Input constraint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xue, W., Guo, Y.Q., Zhang, X.D.: Application of a bank of Kalman filters and a robust Kalman filter for aircraft engine sensor/actuator fault diagnosis. Int. J. Innov. Comput. Inf. Control 4(12), 3161–3168 (2008) Google Scholar
  2. 2.
    Chen, F.Y., Jiang, B., Zhang, K.: Direct self-repair control and actuator failures re-present techniques for civil aviation aircraft. Int. J. Innov. Comput. Inf. Control 5(2), 503–510 (2009) Google Scholar
  3. 3.
    Gao, Z.F., Jiang, B., Qi, R.Y.: Fuzzy observer design for near space vehicle with application to sensor fault estimation. ICIC Express Lett. 4(1), 177–182 (2010) Google Scholar
  4. 4.
    Bai, X.L., Junkins, J.L.: New results for time-optimal three-axis reorientation of a rigid spacecraft. J. Guid. Control Dyn. 32(4), 1071–1076 (2009) CrossRefGoogle Scholar
  5. 5.
    Seo, D., Akella, M.R.: High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design. J. Guid. Control Dyn. 31(4), 884–891 (2008) CrossRefGoogle Scholar
  6. 6.
    Jiang, Y., Hu, Q.L., Ma, G.F.: Design of robust adaptive integral variable structure attitude controller with application to flexible spacecraft. Int. J. Innov. Comput. Inf. Control 4(12), 2431–2440 (2008) Google Scholar
  7. 7.
    Zheng, Q., Wu, F.: Nonlinear H-infinity control designs with axisymmetric spacecraft control. J. Guid. Control Dyn. 32(3), 850–859 (2009) CrossRefGoogle Scholar
  8. 8.
    Sanyal, A., Fosbury, A., Chaturvedi, N., Bernstein, D.S.: Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization. J. Guid. Control Dyn. 32(4), 1167–1178 (2009) CrossRefGoogle Scholar
  9. 9.
    Song, Y.D., Cai, W.C.: Quaternion observer-based model-independent attitude tracking control of spacecraft. J. Guid. Control Dyn. 32(5), 1476–1482 (2009) CrossRefGoogle Scholar
  10. 10.
    Leeghim, H., Choi, Y., Bang, H.: Adaptive attitude control of spacecraft using neural networks. Acta Astronaut. 64(7–8), 778–786 (2009) CrossRefGoogle Scholar
  11. 11.
    Lo, S.C., Chen, Y.P.: Smooth sliding-mode control for spacecraft attitude tracking maneuvers. J. Guid. Control Dyn. 18(6), 1345–1349 (1995) MATHCrossRefGoogle Scholar
  12. 12.
    Floquet, T., Perruquetti, W., Barbot, J.P.: Angular velocity stabilization of a rigid body via VSS control. ASME J. Dyn. Syst. Meas. Control-Trans. 122(4), 669–673 (2000) CrossRefGoogle Scholar
  13. 13.
    Crassidis, J.L., Vadali, S.R., Markley, F.L.: Optimal variable-structure control tracking of spacecraft maneuvers. J. Guid. Control Dyn. 23(3), 564–566 (2000) CrossRefGoogle Scholar
  14. 14.
    Hu, Q.L.: Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dyn. 55(4), 301–321 (2009) MATHCrossRefGoogle Scholar
  15. 15.
    Jin, J., Ko, S., Ryoo, C.K.: Fault tolerant control for satellites with four reaction wheels. Control Eng. Pract. 16(10), 1250–1258 (2008) CrossRefGoogle Scholar
  16. 16.
    Varma, S., Kumar, K.D.: Fault tolerant satellite attitude control using solar radiation pressure based on nonlinear adaptive sliding mode. Acta Astronaut. 66(3–4), 486–500 (2009) Google Scholar
  17. 17.
    Alwi, H., Edwards, C., Stroosma, O., Mulder, J.A.: Fault tolerant sliding mode control design with piloted simulator evaluation. J. Guid. Control Dyn. 31(5), 1186–1201 (2008) CrossRefGoogle Scholar
  18. 18.
    Cai, W.C., Liao, X.H., Song, Y.D.: Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft. J. Guid. Control Dyn. 31(5), 1456–1463 (2008) CrossRefGoogle Scholar
  19. 19.
    Panagiotis, T., Ji, H.L.: Control of underactuated spacecraft with bounded inputs. Automatica 36(8), 1153–1169 (2000) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Boskovic, J.D., Li, S.M., Mehra, R.K.: Robust adaptive variable structure control of spacecraft under control input saturation. J. Guid. Control Dyn. 24(1), 14–22 (2001) CrossRefGoogle Scholar
  21. 21.
    Wallsgrove, R.J., Akella, M.R.: Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances. In: AAS/AIAA 14th Space Flight Mechanics Meeting, Maui, HI, pp. 957–963 (2004) Google Scholar
  22. 22.
    Bateman, A., Hull, J., Lin, Z.L.: A backstepping-based low-and-high gain design for marine vehicles. Int. J. Robust Nonlinear Control 19(4), 480–493 (2009) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kulkarni, A., Purwar, S.: Wavelet based adaptive backstepping controller for a class of nonregular systems with input constraints. Expert Syst. Appl. 36(3), 6686–6696 (2009) CrossRefGoogle Scholar
  24. 24.
    Leonessa, A., Haddad, W.M., Hayakawa, T., Morel, Y.: Adaptive control for nonlinear uncertain systems with actuator amplitude and rate saturation constraints. Int. J. Adapt. Control Signal Process. 23(1), 73–96 (2009) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Xiao, B., Hu, Q.L., Ma, G.: Adaptive sliding mode backstepping control for attitude tracking of flexible spacecraft under input saturation and singularity. Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng. 224(G2), 199–214 (2010) CrossRefGoogle Scholar
  26. 26.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995) Google Scholar
  27. 27.
    Di Gennaro, S.: Output stabilization of flexible spacecraft with active vibration suppression. IEEE Trans. Aerospace Electron. Syst. 39(3), 747–759 (2003) CrossRefGoogle Scholar
  28. 28.
    Bang, H., Tahk, M.J., Choi, H.D.: Large angle attitude control of spacecraft with actuator saturation. Control Eng. Pract. 11(9), 989–997 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Control Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations