Nonlinear Dynamics

, Volume 63, Issue 3, pp 503–512 | Cite as

Control problems of a mathematical model for schistosomiasis transmission dynamics

  • Shujing Gao
  • Yujiang Liu
  • Youquan Luo
  • Dehui Xie
Original Paper


Drug treatment, snail control, cercariae control, improved sanitation and health education are the effective strategies which are used to control the schistosomiasis. In this paper, we formulate a deterministic model for schistosomiasis transmission dynamics in order to explore the role of the several control strategies. The basic reproductive number is computed. Sufficient conditions for the global asymptotic stability of the disease-free equilibrium are obtained. By using the Center Manifold Theory, we analyze the local stability of endemic equilibrium. Finally, numerical simulations support our analytical conclusions and the sensitive analysis on the basic reproductive number to the changes of control parameters are shown. Our results imply that snail-killing is the most effective way to control the transmission of schistosomiasis.


Strategy for schistosomiasis control Center Manifold Theory Basic reproductive number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Tang, C.T., Lu, M.K., Guo, Y., et al.: Development of larval schistosoma Japonicum blocked in oncomelania hupensis by pre-infection with larval exorchis SP. J. Parasitol. 95, 1321–1325 (2009) CrossRefGoogle Scholar
  3. 3.
    Allen, E.J., Victory, Jr.H.D.: Modelling and simulation of a schistosomiasis infection with biological control. Acta Trop. 87, 251–267 (2003) CrossRefGoogle Scholar
  4. 4.
    Feng, Z., Curtis, J., Minchella, D.J.: The influence of drug treatment on the maintenance of schistosome genetic diversity. J. Math. Biol. 43, 52–68 (2001) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chiyaka, E.T., Garira, W.: Mathematical analysis of the transmission dynamics of schistosomiasis in the human-snail hosts. J. Biol. Syst. 17, 367–423 (2009) MathSciNetGoogle Scholar
  6. 6.
    Xu, D., Curtis, J., Feng, Z., et al.: On the role of schistosome mating structure in the maintenance of drug resistant strains. Bull. Math. Biol. 67, 1207–1226 (2005) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Capasso, V.: In: Mathematical Structure of Epidemic Systems. Lecture Notes in Biomathematics, vol. 97. Springer, Berlin (1993) CrossRefGoogle Scholar
  8. 8.
    Levin, S.A., Hallam, T.G., Gross, L.J.: Applied Mathematical Ecology. Springer, New York (1989) MATHGoogle Scholar
  9. 9.
    Capasso, V., Serio, G.: A generalization of the Kermack–Mckendrick deterministic epidemic model. Math. Biosci. 42, 43–61 (1978) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc Can. 45, 1–60 (1965) Google Scholar
  11. 11.
    Lindström, T.: A generalized uniqueness theorem for limit cycles in a predator-prey system. Acta Acad. Abo. 49, 1–9 (1989) Google Scholar
  12. 12.
    Liu, W.M., Hethcote, H.W., Levin, S.A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380 (1987) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Liu, W.M., Levin, S.A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Caraco, T., Wang, I.N.: Free living pathogens: life-history constraints and strain competition. J. Theor. Biol. 250, 569–579 (2008) CrossRefGoogle Scholar
  15. 15.
    Feng, Z., Eppert, A., Milner, F.A., Minchella, D.J.: Estimation of parameters governing the transmission dynamics of schistosomes. Appl. Math. Lett. 17, 1105–1112 (2004) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Spear, R.C., Hubbard, A., Liang, S., Seto, E.: Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ. Health Perspect. 10, 907–915 (2002) CrossRefGoogle Scholar
  17. 17.
    Mangal, T.D., Paterson, S., Fenton, A.: Predicting the impact of long-term temperature changes on the epidemiology and control of schistosomiasis: a mechanistic model. Plos ONE. (2008)
  18. 18.
    Castillo-Chavez, C., Feng, Z., Xu, D.: A schistosomiasis model with mating structure and time delay. Math. Biol. 211, 333–0341 (2008) MATHMathSciNetGoogle Scholar
  19. 19.
    Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biol. Eng. 1, 361–404 (2004) MATHMathSciNetGoogle Scholar
  20. 20.
    Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, New York (2000) Google Scholar
  21. 21.
    Castillo-Chavez, C., Feng, Z., Huangm, W.: On the computation of R0 and its role in global stability. In: Mathematical Approaches for Emerging and Re-emerging Infection Diseases: An Introduction. The IMA Volumes in Mathematics and Its Applications, vol. 125, pp. 229–250. Springer, New York (2002) Google Scholar
  22. 22.
    Carr, J.: Applications Centre Manifold Theory. Springer, New York (1981) MATHGoogle Scholar
  23. 23.
    Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous population. J. Math. Biol. 28, 365–382 (1990) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biol. 180, 29–48 (2002) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Shujing Gao
    • 1
  • Yujiang Liu
    • 1
  • Youquan Luo
    • 1
  • Dehui Xie
    • 2
  1. 1.Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation TechniquesGannan Normal UniversityGanzhouP.R. China
  2. 2.College of BusinessGannan Normal UniversityGanzhouP.R. China

Personalised recommendations