Nonlinear Dynamics

, Volume 63, Issue 3, pp 491–502 | Cite as

Adaptive interval type-2 fuzzy sliding mode control for unknown chaotic system

  • Ji-hwan Hwang
  • Hwan-joo Kwak
  • Gwi-tae Park
Original Paper


In this paper, a novel adaptive interval type-2 fuzzy sliding mode control (AIT2FSMC) methodology is proposed based on the integration of sliding mode control and adaptive interval type-2 fuzzy control for chaotic system. The AIT2FSMC system is comprised of a fuzzy control design and a hitting control design. In the fuzzy control design, an interval type-2 fuzzy controller is designed to mimic a feedback linearization (FL) control law. In the hitting control design, a hitting controller is designed to compensate the approximation error between the FL control law and the interval type-2 fuzzy controller. The parameters of the interval type-2 fuzzy controller, as well as the uncertainty bound of the approximation error, are tuned adaptively. The adaptive laws are derived in the sense of Lyapunov stability theorem, thus the stability of the system can be guaranteed. The proposed control system compared to adaptive fuzzy sliding mode control (AFSMC). Simulation results show that the proposed control systems can achieve favorable performance and robust with respect to system uncertainties and external disturbances.


Chaotic system Interval type-2 fuzzy control Sliding mode control Adaptive control Adaptive interval type-2 fuzzy sliding mode control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Yu, X., Chen, G., Xia, Y., Song, Y., Cao, Z.: An invariant-manifold-based method for chaos control. IEEE Trans. Circuits Syst. I, Fundam. Theor. Appl. 48, 930–937 (2001) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Liao, X., Yu, P.: Chaos control for the family of Rössler systems using feedback controllers. Chaos Solitons Fractals 29, 91–107 (2006) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hugues-Salas, O., Banks, S.P.: Optimal control of chaos in nonlinear driven oscillators via linear time-varying approximations. Int. J. Bifurc. Chaos 18, 3355–3374 (2008) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Feki, M.: An adaptive feedback control of linearizable chaotic systems. Chaos Solitons Fractals 15, 883–890 (2003) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hua, C., Guan, X.: Adaptive control for chaotic systems. Chaos Solitons Fractals 22, 55–60 (2004) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Feng, G., Chen, G.: Adaptive control of discrete-time chaotic systems: a fuzzy control approach. Chaos Solitons Fractals 23, 459–467 (2005) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, B., Liu, X., Tong, S.: Adaptive fuzzy approach to control unified chaotic systems. Chaos Solitons Fractals 34, 1180–1187 (2007) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chang, J.F., Hung, M.L., Yang, Y.S., Liao, T.L., Yan, J.J.: Controlling chaos of the family of Rössler systems using sliding mode control. Chaos Solitons Fractals 37, 609–622 (2008) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Khoo, S., Man, Z., Zhao, S.: Comments on “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties”. Automatica 44, 2995–2998 (2008) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dadras, S., Momeni, H.R.: Control uncertain Genesio-Tesi chaotic system: adaptive sliding mode approach. Chaos Solitons Fractals 42, 3140–3146 (2009) CrossRefGoogle Scholar
  12. 12.
    Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40, 2–22 (1993) CrossRefGoogle Scholar
  13. 13.
    Edward, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor & Francis, London (1998) Google Scholar
  14. 14.
    Yu, X., Kaynak, O.: Sliding-mode control with soft computing: a survey. IEEE Trans. Ind. Electron. 56, 3275–3285 (2009) CrossRefGoogle Scholar
  15. 15.
    Poursamad, A., Markazi, Amir H.D.: Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems. Chaos Solitons Fractals 42, 3100–3109 (2009) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8, 535–550 (2000) CrossRefGoogle Scholar
  17. 17.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning I. Inform. Sci. 8, 199–249 (1975) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Ying, H., Siler, W., Buckley, J.J.: Fuzzy control theory: a nonlinear case. Automatica 26, 513–520 (1990) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Park, C.W., Lee, C.H., Park, M.: Design of an adaptive fuzzy model based controller for chaotic dynamics in Lorenz systems with uncertainty. Inform. Sci. 147, 245–266 (2002) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, New Jersey (1991) MATHGoogle Scholar
  21. 21.
    Wai, R.J., Lin, C.M., Hsu, C.F.: Adaptive fuzzy sliding-mode control for electrical servo drive. Fuzzy Sets Syst. 143, 295–310 (2004) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Poursamad, A., Davaie-Markazi, A.H.: Robust adaptive fuzzy control of unknown chaotic systems. Appl. Soft Comput. J. 9, 970–976 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Electrical EngineeringKorea UniversitySeoulKorea

Personalised recommendations