Nonlinear Dynamics

, Volume 63, Issue 1–2, pp 223–237 | Cite as

Hopf bifurcation and spatio-temporal patterns in delay-coupled van der Pol oscillators

  • Yongli Song
Original Paper


In this paper, the dynamics of a pair of van der Pol oscillators with delayed velocity coupling is studied by taking the time delay as a bifurcation parameter. We first investigate the stability of the zero equilibrium and the existence of Hopf bifurcations induced by delay, and then study the direction and stability of the Hopf bifurcations. Then by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups, we investigate the spatio-temporal patterns of Hopf bifurcating periodic oscillations. We find that there are different in-phase and anti-phase patterns as the coupling time delay is increased. The analytical theory is supported by numerical simulations, which show good agreement with the theory.


van der Pol oscillator Delay Stability switches Hopf bifurcation Spatio-temporal patterns 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710, 754–762 (1920) Google Scholar
  2. 2.
    Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer, Berlin (1990) MATHGoogle Scholar
  3. 3.
    Atay, F.M.: Van der Pol’s oscillator under delayed feedback. J. Sound Vib. 218(2), 333–339 (1998) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Wei, J., Jiang, W.: Stability and bifurcation analysis in Van der Pol’s oscillator with delayed feedback. J. Sound Vib. 283, 801–819 (2005) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Radparvar, K., Kaplan, B.Z.: Experimental and analytical investigations of synchronization dynamics of two coupled multivibrators. IEEE Trans. Circ. Syst. 32, 1072–1078 (1985) CrossRefGoogle Scholar
  6. 6.
    Saito, T.: On a coupled relaxation oscillator. IEEE Trans. Circ. Syst. 35, 1147–1155 (1988) MATHCrossRefGoogle Scholar
  7. 7.
    Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications. Springer, New York (1987) MATHGoogle Scholar
  8. 8.
    Hohl, A., Gavrielides, A., Erneux, T., Kovanis, V.: Localized synchronization in two coupled nonidentical semiconductor lasers. Phys. Rev. Lett. 78, 4745–4748 (1997) CrossRefGoogle Scholar
  9. 9.
    Ramana Reddy, D.V., Sen, A., Johnston, G.L.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80, 5109–5112 (1998) CrossRefGoogle Scholar
  10. 10.
    Ramana Reddy, D.V., Sen, A., Johnston, G.L.: Time delay effects on coupled limit cycle oscillators at Hopf bifurcation. Physica D 129, 335–357 (1999) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Campbell, S.A., Edwards, R., Van den Driessche, P.: Delayed coupling between two neural network loops. SIAM J. Appl. Math. 65(1), 316–335 (2004) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Song, Y., Wei, J., Yuan, Y.: Stability switches and Hopf bifurcations in a pair of delay-coupled oscillators. J. Nonlinear Sci. 17, 145–166 (2007) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Song, Y., Makarov, V.A., Velarde, M.G.: Stability switches, oscillatory multistability, and spatio-temporal patterns of nonlinear oscillations in recurrently delay coupled neural networks. Biol. Cybern. 101, 147–167 (2009) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Song, Y., Tade, M., Zhang, T.: Bifurcation analysis and spatio-temporal patterns of nonlinear oscillations in a delayed neural network with unidirectional coupling. Nonlinearity 22, 975–1001 (2009) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    York, R.A., Compton, R.C.: Quasi-optical power combining using mutually synchronized oscillator arrays. IEEE Trans. Microw. Theory Tech. 39, 1000–1009 (1991) CrossRefGoogle Scholar
  16. 16.
    York, R.A., Compton, R.C.: Experimental observation and simulation of mode-locking phenomena in coupled-oscillator arrays. J. Appl. Phys. 71, 2959–2965 (1992) CrossRefGoogle Scholar
  17. 17.
    York, R.A.: Nonlinear analysis of phase relationships in quasi-optical oscillator arrays. IEEE Trans. Microw. Theory Tech. 41, 1799–1809 (1993) CrossRefGoogle Scholar
  18. 18.
    Lynch, J.J., York, R.A.: Stability of mode locked states of coupled oscillator arrays. IEEE Trans. Circ. Syst. 42, 413–417 (1995) CrossRefGoogle Scholar
  19. 19.
    Kuntsevich, B.F., Pisarchik, A.N.: Synchronization effects in a dual-wavelength class-B laser with modulated losses. Phys. Rev. E 64, 046221 (2001) CrossRefGoogle Scholar
  20. 20.
    Wirkus, S., Rand, R.H.: The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn. 30, 205–221 (2002) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sen, A.K., Rand, R.H.: A numerical investigation of the dynamics of a system of two time-delay coupled relaxation oscillations. Commun. Pure Appl. Anal. 2(4), 567–577 (2003) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Li, X., Ji, J., Hansen, C.H.: Dynamics of two delay coupled van der Pol oscillators. Mech. Res. Commun. 33, 614–627 (2006) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993) MATHGoogle Scholar
  24. 24.
    Ruan, S.: Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays. Q. Appl. Math. 59, 159–173 (2001) MATHGoogle Scholar
  25. 25.
    Song, Y., Han, M., Peng, Y.: Stability and Hopf bifurcations in a competitive Lotka–Volterra system with two delays. Chaos Solitons Fractals 22, 1139–1148 (2004) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Faria, T., Magalháes, L.T.: Normal form for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122, 181–200 (1995) MATHCrossRefGoogle Scholar
  27. 27.
    Faria, T., Magalháes, L.T.: Normal form for retarded functional differential equations and applications to Bogdanov–Takens singularity. J. Differ. Equ. 122, 201–224 (1995) MATHCrossRefGoogle Scholar
  28. 28.
    Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982) MATHGoogle Scholar
  29. 29.
    Wu, J.: Symmetric functional-differential equations and neural networks with memory. Trans. Am. Math. Soc. 350, 4799–4838 (1998) MATHCrossRefGoogle Scholar
  30. 30.
    Golubitsky, M., Stewart, I., Schaeffer, D.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, New York (1988) MATHGoogle Scholar
  31. 31.
    Guo, S., Lamb, S.W.: Equivariant Hopf bifurcation for neural functional differential equations. Proc. Am. Math. Soc. 136, 2031–2041 (2008) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia (2002) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of MathematicsTongji UniversityShanghaiChina

Personalised recommendations