Advertisement

Nonlinear Dynamics

, Volume 63, Issue 1–2, pp 205–215 | Cite as

The monotonicity and critical periods of periodic waves of the φ 6 field model

  • Aiyong Chen
  • Jibin Li
  • Wentao Huang
Original Paper

Abstract

In this paper, we study the relationship between period and energy of periodic traveling wave solutions for the φ 6 field model. The various topological phase portraits with periodic annulus are given by using standard phase portrait analytical technique. Some analytic behaviors (convexity, monotonicity and number of critical periods) of the period functions associated with periodic waves are investigated. We prove that the period function has exactly one critical period under certain conditions. Moreover, the numerical simulation is made. The results show that our theoretical analysis agrees with the numerical simulation.

Keywords

Period function Critical period Periodic wave φ6 field model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Camassa, R., Holm, D.: An integrable shallow wave equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Tian, L., Liang, S.: Global well-posedness and limit behavior of the solutions to the viscous Degasperis–Procesi equation. J. Math. Phys. 50, 033503 (2009) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Tian, L., Chen, Y., Jiang, X., Xia, L.: Low-regularity solutions of the periodic Fornberg–Whitham equation. J. Math. Phys. 50, 073507 (2009) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cao, C., Geng, X., Wang, H.: Algebro-geometric solution of the (2+1)-dimensional Burgers equation with a discrete variable. J. Math. Phys. 43, 621–643 (2002) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Geng, X., Xue, B.: An extension of integrable Peakon equations with cubic nonlinearity. Nonlinearity 22, 1847–1856 (2009) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Feng, D., Li, J.: Exact explicit travelling wave solutions for the (n+1)-dimensional φ 6 field model. Phys. Lett. A 369, 255–261 (2007) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Turner, J., Boyd, T.: Soliton formation in magnetized Vlasov plasmas. J. Plasma Phys. 22, 121–147 (1979) CrossRefGoogle Scholar
  8. 8.
    Friedberg, R., et al.: Mini-soliton stars. Phys. Rev. D 35, 3640 (1987) CrossRefGoogle Scholar
  9. 9.
    Masperi, L.: Solitonic bubbles and phase transitions. Phys. Rev. D 41, 3263 (1990) CrossRefGoogle Scholar
  10. 10.
    Hasegawa, A., Kodama, Y.: Amplification and reshaping of optical solitons in a glass fiber-I. Opt. Lett. 7, 285–287 (1982) CrossRefGoogle Scholar
  11. 11.
    Jia, M., Lou, S.Y.: New deformation relations and exact solutions of the high-dimensional φ 6 field model. Phys. Lett. A 353, 407–415 (2006) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Saxena, A., Barsch, G.R., Hatch, D.M.: Lattice dynamics representation theory versus isotropy subgroup method with application to M 5 mode instability in CsCI structure. Phase Trans. 46, 89–142 (1994) CrossRefGoogle Scholar
  13. 13.
    Blaschko, O., Dmitriev, V., Krexner, G., Toledano, P.: Theory of the martensitic phase transformations in lithium and sodium. Phys. Rev. B 59, 9095–9112 (1999) CrossRefGoogle Scholar
  14. 14.
    Khare, A., Saxena, A.: Domain wall and periodic solutions of coupled φ 4 models in an external field. J. Math. Phys. 47, 092902 (2006) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Khare, A., Saxena, A.: Domain wall and periodic solutions of coupled asymmetric double well models. J. Math. Phys. 48, 043302 (2007) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Khare, A., Saxena, A.: Domain wall and periodic solution of a coupled φ 6 model. J. Math. Phys. 49, 063301 (2008) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Khare, A., Saxena, A.: Higher order periodic solutions of coupled φ 4 and φ 6 models. J. Phys. A, Math. Theor. 42, 335401 (2009) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Li, C., Lu, K.: The period function of hyperelliptic Hamiltonian of degree 5 with real critical points. Nonlinearity 21, 465–483 (2008) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chow, S.N., Sanders, J.A.: On the number of critical points of the period. J. Differ. Equ. 64, 51–66 (1986) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Chicone, C.: Geometric methods for two-point nonlinear boundary value problems. J. Differ. Equ. 72, 360–407 (1988) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Schaaf, R.: A class of Hamiltonian systems with increasing periods. J. Reine Angew. Math 363, 96–109 (1985) MATHMathSciNetGoogle Scholar
  22. 22.
    Zhao, Y.: The monotonicity of period function for codimension four quadratic system Q 4. J. Differ. Equ. 185, 370–387 (2002) MATHCrossRefGoogle Scholar
  23. 23.
    Wang, D.: The critical points of the period function of x′′−x 2(xα)(x−1)=0 (0≤α<1). Nonlinear Anal. 11, 1029–1050 (1987) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Manosas, F., Villadelprat, J.: A note on the critical periods of potential systems. Int. J. Bifurc. Chaos 16, 765–774 (2006) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Smoller, J., Wasserman, A.: Global bifurcation of steady-state solutions. J. Differ. Equ. 39, 269–290 (1981) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Yang, L., Zeng, X.: The period function of potential systems of polynomials with real zeros. Bull. Sci. Math. 133, 555–577 (2009) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Center of Nonlinear Science StudiesKunming University of Science and TechnologyKunmingP.R. China
  2. 2.School of Mathematics and Computing ScienceGuilin University of Electronic TechnologyGuilinP.R. China

Personalised recommendations