Nonlinear Dynamics

, Volume 62, Issue 4, pp 875–882 | Cite as

Complete synchronization of chaotic complex nonlinear systems with uncertain parameters

Original Paper


Our main objective in this work is to investigate complete synchronization (CS) of n-dimensional chaotic complex systems with uncertain parameters. An adaptive control scheme is designed to study the synchronization of chaotic attractors of these systems. We applied this scheme, as an example, to study complete synchronization of chaotic attractors of two identical complex Lorenz systems. The adaptive control functions and the parameters estimation laws are calculated analytically based on the complex Lyapunov function. We show that the error dynamical systems are globally stable. Numerical simulations are computed to check the analytical expressions of adaptive controllers.


Chaotic system Synchronization Uncertain Error function Lyapunov function Complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization. Singapore, World Scientific (1996) MATHCrossRefGoogle Scholar
  3. 3.
    Han, S.K., Kerrer, C., Kuramoto, Y.: Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75, 3190–3193 (1995) CrossRefGoogle Scholar
  4. 4.
    Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological system. Nature 399, 354–359 (1999) CrossRefGoogle Scholar
  5. 5.
    Yang, T., Chua, L.O.: Secure communication via chaotic parameter modulation. IEEE Trans. Circuits Syst. I 43, 817–819 (1996) CrossRefGoogle Scholar
  6. 6.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Luo, A.C.J.: A theory for synchronization of dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 14, 1901–1951 (2009) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Femat, R., Solis-Perales, G.: On the chaos synchronization phenomena. Phys. Lett. A 262, 50–60 (1997) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Mossa Al-sawalha, M., Noorani, M.S.M.: Anti-synchronization of chaotic systems with uncertain parameters via adaptive control. Phys. Lett. A 373, 2852–2858 (2009) CrossRefGoogle Scholar
  10. 10.
    Hua, W., Zheng-zhi, H., Wei, Z., Qi-yue, X.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF. Nonlinear Anal. 10, 715–722 (2009) MATHCrossRefGoogle Scholar
  11. 11.
    Slotine, J.J.E., Lin, W.P.: Applied Nonlinear Control. Prentice-Hall, New York (1991) MATHGoogle Scholar
  12. 12.
    Chen, S., Lü, J.: Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys. Lett. A 299, 353–358 (2002) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fotsin, H.B., Daafouz, J.: Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification. Phys. Lett. A 339, 304–315 (2005) MATHCrossRefGoogle Scholar
  14. 14.
    Huang, L., Wang, M., Feng, R.: Parameters identification and adaptive synchronization of chaotic systems with unknown parameters. Phys. Lett. A 342, 299–304 (2005) MATHCrossRefGoogle Scholar
  15. 15.
    Park, Ju H.: Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters. J. Comput. Appl. Math. 213, 288–293 (2008) MATHCrossRefGoogle Scholar
  16. 16.
    Ge, Z.-M., Lee, J.-K.: Chaos synchronization and parameter identification for gyroscope system. Appl. Math. Comput. 163, 667–682 (2005) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Rui-hong, L.: Exponential generalized synchronization of uncertain coupled chaotic systems by adaptive control. Commun. Nonlinear Sci. Numer. Simul. 14, 2757–2764 (2009) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Manfeng, H., Zhenyuan, X.: Adaptive feedback controller for projective synchronization. Nonlinear Anal. 9, 1253–1260 (2008) MATHCrossRefGoogle Scholar
  19. 19.
    Sudheer, K.S., Sabir, M.: Adaptive function projective synchronization of two-cell Quantum-CNN chaotic oscillators with uncertain parameters. Phys. Lett. A 373, 1847–1851 (2009) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Junwei, L., Xinyu, W., Yinhua, L.: How many parameters can be identified by adaptive synchronization in chaotic systems? Phys. Lett. A 373, 1249–1256 (2009) CrossRefGoogle Scholar
  21. 21.
    Xiaoyun, C., Jianfeng, L.: Adaptive synchronization of different chaotic systems with fully unknown parameters. Phys. Lett. A 364, 123–128 (2007) CrossRefGoogle Scholar
  22. 22.
    Mahmoud, G.M., Bountis, T., Mahmoud, E.E.: Active control and global synchronization of the complex Chen and Lü systems. Int. J. Bifurc. Chaos 17, 4295–4308 (2007) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Mahmoud, G.M., Al-Kashif, M.A., Aly, S.A.: Basic properties and chaotic synchronization of complex Lorenz system. Int. J. Modern Phys. C 18, 253–265 (2007) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Mahmoud, G.M., Aly, S.A., Al-Kashif, M.A.: Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dyn. 51, 171–181 (2008) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Mahmoud, G.M., Al-Kashif, M.A., Farghaly, A.A.: Chaotic and hyperchaotic attractors of a complex nonlinear system. J. Phys.  A Math. Theor. 41(5), 055104 (2008). doi: 10.1088/1751-8113/41/5/055104 CrossRefMathSciNetGoogle Scholar
  26. 26.
    Mahmoud, G.M., Abdusalam, H.A., Farghaly, A.A.: Chaotic behavior and chaos control for a class of complex partial differential equations. Int. J. Modern Phys. C 12(6), 889–899 (2001) CrossRefGoogle Scholar
  27. 27.
    Mahmoud, G.M., Bountis, T., AbdEl-Latif, G.M., Mahmoud, E.E.: Chaos synchronization of two different complex Chen and Lü systems. Nonlinear Dyn. 55, 43–53 (2009). doi: 10.1007/s11071-008-9343-5 MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Mahmoud, G.M., Bountis, T., Al-Kashif, M.A., Aly, S.A.: Dynamical properties and synchronization of complex nonlinear equations for detuned lasers. Dyn. Syst. 24, 63–79 (2009). doi: 10.1080/14689360802438298 MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Fowler, A.C., Gibbon, J.D., Mc Guinnes, M.T.: The real and complex Lorenz equations and their relevance to physical systems. Physica D 7, 126–134 (1983) MATHMathSciNetGoogle Scholar
  30. 30.
    Gibbon, J.D., Mc Guinnes, M.J.: The real and complex Lorenz equations in rotating fluids and laser. Physica D 5, 108–121 (1982) MATHMathSciNetGoogle Scholar
  31. 31.
    Ning, C.Z., Haken, H.: Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations. Phys. Rev. A 41, 3826–3837 (1990) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Department of Mathematics, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations