Advertisement

Nonlinear Dynamics

, Volume 62, Issue 4, pp 867–874 | Cite as

Exponential synchronization of chaotic neural networks with time delays: a M-matrix approach

  • Z. Xing
  • J. Peng
  • K. Wang
Original Paper

Abstract

Based on M-matrix theory, global exponential synchronization of a class of time-varying delayed chaotic neural networks is investigated. Without designing a Lyapunov function, some new criteria are established under less restrictive conditions using this approach. Finally, simulation examples are given to verify the effectiveness of the obtained conditions.

Keywords

Synchronization M-matrix Time-varying delay Chaotic neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–823 (1990) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, G., Dong, X.: From Chaos to Order: Methodologies Perspectives and Application. Singapore, World Scientific (1998) MATHCrossRefGoogle Scholar
  3. 3.
    Wagg, D.J.: Partial synchronization of nonlinear chaotic systems via adaptive control, with applications to modelling coupled nonlinear systems. Int. J. Bifurc. Chaos 12(3), 561–570 (2002) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Yang, T., Chua, L.O.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I 44, 976–988 (1997) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Steinmetz, P.N., Roy, A., Fitzgerald, P.J., Hsiao, S.S., Johnson, K.O., Niebur, E.: Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404, 187–190 (2000) CrossRefGoogle Scholar
  6. 6.
    Tsuda, I.: Chaos itinerancy as a dynamical basis of hermeneutics in brain and mind. World Futures 32, 167–184 (1991) CrossRefGoogle Scholar
  7. 7.
    Cheng, C., Liao, T., Hwang, C.: Exponential synchronization of a class of chaotic neural networks. Chaos Solitons Fractals 24, 197–206 (2005) MATHMathSciNetGoogle Scholar
  8. 8.
    He, W., Cao, J.: Exponential synchronization of chaotic neural networks: a matrix measure approach. Nonlinear Dyn. 55, 55–65 (2009) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Park, J.H.: Adaptive synchronization of a unified chaotic system with an uncertain parameter. Int. J. Nonlinear Sci. Numer. Simul. 6(2), 201–207 (2005) Google Scholar
  10. 10.
    Bernardo, M.D.: An adaptive control and synchronization of continuous-time chaotic systems. Int. J. Bifurc. Chaos 6, 557–568 (1996) MATHCrossRefGoogle Scholar
  11. 11.
    Fotsin, H.B., Daafouz, J.: Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification. Phys. Lett. A 339, 304–315 (2005) MATHCrossRefGoogle Scholar
  12. 12.
    Khadra, A., Liu, X.Z., Shen, X.: Impulsively synchronizing chaotic systems with delay and applications to secure communication. Automatica 41(9), 1491–1502 (2005) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Earl, M.G., Strogatz, S.H.: Synchronization in oscillator networks with delayed coupling: a stability criterion. Phys. Rev. E 67, 036204 (2003) Google Scholar
  14. 14.
    Grassi, G., Mascolo, S.: Synchronization high dimensional chaotic systems via eigenvalue placement with application to cellular neural networks. Int. J. Bifurc. Chaos 9(4), 705–711 (1999) MATHCrossRefGoogle Scholar
  15. 15.
    Lu, H., He, Z.: Synchronization of chaotic systems based on system partition approaches. Phys. Lett. A 219, 271–276 (1996) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pecora, L.M., Carroll, T.L.: Master stability functions for synchronization coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998) CrossRefGoogle Scholar
  17. 17.
    Lei, Y., Xu, W., Zheng, H.: Synchronization of two chaotic nonlinear gyros using active control. Phys. Lett. A 343, 153–158 (2005) MATHCrossRefGoogle Scholar
  18. 18.
    Lu, H.: Chaotic attractors in delayed neural networks. Phys. Lett. A 298, 109–116 (2002) MATHCrossRefGoogle Scholar
  19. 19.
    Gilli, M.: Strange attractors in delayed cellular neural networks. IEEE Trans. Circuits Syst. I 40, 166–173 (1993) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Zou, F., Nossek, J.A.: Bifurcation and chaos in cellular neural networks. IEEE Trans. Circuits Syst. I 40(3), 166–173 (1993) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lu, W., Chen, T.: Synchronization of coupled connected neural networks with delays. IEEE Trans. Circuits Syst. I 51(12), 2491–2503 (2004) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Yu, W., Cao, J.: Synchronization control of stochastic delayed neural networks. Physica A 373, 252–260 (2007) CrossRefGoogle Scholar
  23. 23.
    Horn, R.A., Johnson, C.R.: Topic in Matrix Analysis, pp. 112–116. Cambridge Univ. Press, Cambridge (1994) Google Scholar
  24. 24.
    Tokumarn, H., Adachi, N., Amemiya, T.: Macroscopic stability of interconnected systems. In: 6th IFAC Congress Papers ID44.4, pp. 1–7 (1975) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of ScienceXi’an Jiaotong UniversityXi’anChina
  2. 2.School of ScienceChang’an UniversityXi’anChina

Personalised recommendations