Nonlinear Dynamics

, Volume 62, Issue 4, pp 743–750 | Cite as

Nonzero mean PDF solution of nonlinear oscillators under external Gaussian white noise

  • G. K. Er
  • H. T. Zhu
  • V. P. Iu
  • K. P. Kou
Original paper


This paper is concerned with the nonzero mean stationary probability density function (PDF) solution for nonlinear oscillators under external Gaussian white noise. The PDF solution is governed by the well-known Fokker–Planck–Kolmogorov (FPK) equation and this equation is numerically solved by the exponential-polynomial closure (EPC) method. Different types of oscillators are further investigated in the case of nonzero mean response. Either weak or strong nonlinearity is considered to show the effectiveness of the EPC method. When the polynomial order equals 2, the results of the EPC method are identical with those given by equivalent linearization (EQL) method. These results obtained with the EQL method differ significantly from exact solution or simulated results. When the polynomial order is 4 or 6, the PDFs obtained with the EPC method present a good agreement with the exact solution or simulated results, especially in the tail regions. The numerical analysis also shows that the nonzero mean PDF of the response is nonsymmetrically distributed about its mean unlike the case of the zero mean PDF reported in the references.


Nonlinear oscillator Nonzero mean Probability density function Gaussian white noise Stochastic processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baber, T.T.: Nonzero mean random vibration of hysteretic systems. ASCE J. Eng. Mech. 110, 1036–1049 (1984) CrossRefGoogle Scholar
  2. 2.
    Roberts, J.B., Spanos, P.D.: Random Vibration and Statistical Linearization. Dover, Mineola (2003) MATHGoogle Scholar
  3. 3.
    Baratta, A., Zuccaro, G.: Analysis of nonlinear oscillators under stochastic excitation by the Fokker-Planck-Kolmogorov equation. Nonlinear Dyn. 5, 255–271 (1994) CrossRefGoogle Scholar
  4. 4.
    Caughey, T.K., Ma, F.: The exact steady-state solution of a class of non-linear stochastic systems. Int. J. Non-Linear Mech. 17, 137–142 (1982) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dimentberg, M.F.: An exact solution to a certain non-linear random vibration problem. Int. J. Non-Linear Mech. 17, 231–236 (1982) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Huang, Z.L., Jin, X.L., Li, J.Y.: Construction of the stationary probability density for a family of SDOF strongly non-linear stochastic second-order dynamical systems. Int. J. Non-Linear Mech. 43, 563–568 (2008) CrossRefGoogle Scholar
  7. 7.
    Sobczyk, K., Trębicki, J.: Maximum entropy principle and nonlinear stochastic oscillators. Physica A 193, 448–468 (1993) MATHCrossRefGoogle Scholar
  8. 8.
    Cai, G.Q., Lin, Y.K.: A new approximate solution technique for randomly excited non-linear oscillators. Int. J. Non-Linear Mech. 23, 409–420 (1988) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lin, Y.K., Cai, G.Q.: Exact stationary response solution for second order nonlinear systems under parametric and external white-noise excitations: Part II. ASME J. Appl. Mech. 55, 702–705 (1988) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 1. Gordon & Breach, New York (1963) Google Scholar
  11. 11.
    Cai, G.Q., Lin, Y.K.: Random vibration of strongly nonlinear systems. Nonlinear Dyn. 24, 3–15 (2001) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Crandall, S.H.: Perturbation techniques for random vibration of nonlinear systems. J. Acoust. Soc. Am. 35, 1700–1705 (1963) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Dunne, J.F., Ghanbari, M.: Extreme-value prediction for non-linear stochastic oscillators via numerical solutions of the stationary FPK equation. J. Sound Vib. 206, 697–724 (1997) CrossRefGoogle Scholar
  14. 14.
    Shinozuka, M.: Monte Carlo solution of structural dynamics. Comput. Struct. 2, 855–874 (1972) CrossRefGoogle Scholar
  15. 15.
    Caughey, T.K.: Response of a nonlinear string to random loading. ASME J. Appl. Mech. 26, 341–344 (1959) MATHMathSciNetGoogle Scholar
  16. 16.
    Iyengar, R.N., Dash, P.K.: Study of the random vibration of nonlinear systems by the Gaussian closure technique. ASME J. Appl. Mech. 45, 393–399 (1978) MATHGoogle Scholar
  17. 17.
    Er, G.K.: An improved closure method for analysis of nonlinear stochastic systems. Nonlinear Dyn. 17, 285–297 (1998) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Er, G.K., Zhu, H.T., Iu, V.P., Kou, K.P.: PDF solution of nonlinear oscillators subject to multiplicative Poisson pulse excitation on displacement. Nonlinear Dyn. 55, 337–348 (2009) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of MacauMacao SARPR China
  2. 2.Department of Civil EngineeringTianjin UniversityTianjinPR China

Personalised recommendations