Skip to main content
Log in

Infinite dimensional slow modulations in a well known delayed model for cutting tool vibrations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We apply the method of multiple scales (MMS) to a well-known model of regenerative cutting vibrations in the large delay regime. By “large” we mean the delay is much larger than the timescale of typical cutting tool oscillations. The MMS up to second order, recently developed for such systems, is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than the first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy in that plotted solutions of moderate amplitudes are visually near-indistinguishable. The advantages of the present analysis are that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space; lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS; the strong sensitivity of the slow modulation dynamics to small changes in parameter values, peculiar to such systems with large delays, is seen clearly; and though certain parameters are treated as small (or, reciprocally, large), the analysis is not restricted to infinitesimal distances from the Hopf bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Popular Dynamics. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  2. Stépán, G., Haller, G.: Quasiperiodic oscillations in robot dynamics. Nonlinear Dyn. 8, 513–528 (1995)

    Google Scholar 

  3. Bélair, J., Campbell, S.A., Van Den Driessche, P.: Frustration, stability, and delay-induced oscillations in a neural network model. SIAM J. Appl. Math. 56(1), 245–255 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Pieroux, D., Erneux, T., Gavrielides, A., Kovanis, V.: Hopf bifurcation subject to a large delay in a laser system. SIAM J. Appl. Math. 61(3), 966–982 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Heil, T., Fischer, I., Elsaßer, W., Krauskopf, B., Green, K., Gavrielides, A.: Delay dynamics of semiconductor lasers with short external cavities. Bifurcation scenarios and mechanisms. Phys. Rev. E 67, 066214 (2003)

    Article  MathSciNet  Google Scholar 

  6. Alhazza, K.A., Daqaq, M.F., Nayfeh, A.H., Inman, D.J.: Non-linear vibrations of parametrically excited cantilever beams subjected to non-linear delayed-feedback control. Int. J. Non-Linear Mech. 43, 801–812 (2008)

    Article  Google Scholar 

  7. Daqaq, M.F., Alhazza, K.A., Arafat, H.N.: Non-linear vibrations of cantilever beams with feedback delays. Int. J. Non-Linear Mech. 43, 962–978 (2008)

    Article  Google Scholar 

  8. Tobias, S.A.: Machine-Tool Vibration. Blackie and Sons Ltd., London (1965)

    Google Scholar 

  9. Stépán, G., Insperger, T., Szalai, R.: Delay, parametric excitation, and the nonlinear dynamics of cutting processes. Int. J. Bifurc. Chaos 15(9), 2783–2798 (2005)

    Article  MATH  Google Scholar 

  10. Wiercigroch, M., Budak, E.: Sources of nonlinearities, chatter generation and suppression in metal cutting. Philos. Trans. R. Soc. Lond. A 359(1781), 663–693 (2001)

    Article  MATH  Google Scholar 

  11. Moon, F.C. (ed.) Dynamics and Chaos in Manufacturing Processes. Wiley, New York (1997)

    Google Scholar 

  12. Kalmár-Nagy, T., Stépán, G., Moon, F.C.: Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn. 26, 121–142 (2001)

    Article  MATH  Google Scholar 

  13. Hanna, N.H., Tobias, S.A.: A theory of nonlinear regenerative chatter. ASME J. Eng. Ind. 96, 247–255 (1974)

    Google Scholar 

  14. Moon, F.C., Kalmár-Nagy, T.: Nonlinear models for complex dynamics in cutting materials. Philos. Trans. R. Soc. Lond. A 359, 695–711 (2001)

    Article  MATH  Google Scholar 

  15. Johnson, M.A., Moon, F.C.: Experimental characterization of quasiperiodicity and chaos in a mechanical system with delay. Int. J. Bifurc. Chaos 9(1), 49–65 (1999)

    Article  MATH  Google Scholar 

  16. Johnson, M.A., Moon, F.C.: Nonlinear techniques to characterize pre-chatter and chatter vibrations in machining of metals. Int. J. Bifurc. Chaos 11(2), 449–467 (2001)

    Article  Google Scholar 

  17. Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Pitman Research Notes in Mathematics Series, vol. 210. Longman Scientific & Technical, Longman Group UK Limited, Harlow (1989)

    MATH  Google Scholar 

  18. Warmiński, J., Litak, G., Cartmell, M.P., Khanin, R., Wiercigroch, M.: Approximate analytical solutions for primary chatter in the non-linear metal cutting model. J. Sound Vib. 259(4), 917–933 (2003)

    Article  Google Scholar 

  19. Chandiramani, N.K., Pothala, T.: Dynamics of 2-dof regenerative chatter during turning. J. Sound Vib. 290, 448–464 (2006)

    Article  Google Scholar 

  20. Grabec, I.: Chaotic dynamics of the cutting process. Int. J. Mach. Tools Manuf. 28(1), 19–32 (1988)

    Article  Google Scholar 

  21. Wiercigroch, M., Cheng, A.H.-D.: Chaotic and stochastic dynamics of orthogonal metal cutting. Chaos Solitons Fractals 8(4), 715–726 (1997)

    Article  MATH  Google Scholar 

  22. Fofana, M.S.: Delay dynamical systems and applications to nonlinear machine-tool chatter. Chaos Solitons Fractals 17, 731–747 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gilsinn, D.E.: Estimating critical Hopf bifurcation parameters for a second-order delay differential equation with application to machine tool chatter. Nonlinear Dyn. 30, 103–154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wahi, P., Chatterjee, A.: Regenerative tool chatter near a codimension 2 Hopf point using multiple scales. Nonlinear Dyn. 40, 323–338 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stépán, G., Insperger, T., Turi, J.: State-dependent delay in regenerative turning processes. Nonlinear Dyn. 47, 275–283 (2007)

    MATH  Google Scholar 

  26. Insperger, T., Barton, D.A.W., Stépán, G.: Criticality of Hopf-bifurcation in state-dependent delay model of turning processes. Int. J. Non-Linear Mech. 43, 140–149 (2008)

    Article  Google Scholar 

  27. Das, S.L., Chatterjee, A.: Second order multiple scales for oscillators with large delay. Nonlinear Dyn. 39(4), 375–394 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nayfeh, A.H.: Order reduction of retarded nonlinear systems—the method of multiple scales versus center-manifold reduction. Nonlinear Dyn. 51, 483–500 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Erneux, T.: Multiple time scale analysis of delay differential equations modeling mechanical systems. In: Proceedings of IDETC/CIE 2005, ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Long Beach, CA, DETC2005-85028, September 24–28 (2005)

  30. Nandakumar, K., Wahi, P., Chatterjee, A.: Infinite dimensional slow modulations in a delayed model for orthogonal cutting vibrations. In: Proceedings of the 9th Biennial ASME Conference on Engineering Systems Design and Analysis, Haifa, Israel, ESDA2008-59339, July 7–9 (2008)

  31. Chatterjee, S., Singha, T.K.: Controlling chaotic instability of cutting process by high-frequency excitation: a numerical investigation. J. Sound Vib. 267, 1184–1192 (2003)

    Article  Google Scholar 

  32. Litak, G., Kasperek, R., Zaleski, K.: Effect of high-frequency excitation in regenerative turning of metals and brittle materials. Chaos Solitons Fractals 40(5), 2077–2082 (2009)

    Article  Google Scholar 

  33. Dombovari, Z., Wilson, R.E., Stépán, G.: Estimates of the bistable region in metal cutting. Proc. R. Soc. Lond. A 464, 3255–3271 (2008)

    Article  MATH  Google Scholar 

  34. Brandt, S.F., Pelster, A., Wessel, R.: Variational calculation of the limit cycle and its frequency in a two-neuron model with delay. Phys. Rev. E 74, 036201 (2006)

    Article  MathSciNet  Google Scholar 

  35. Rand, R., Verdugo, A.: Hopf bifurcation in a DDE model of gene expression. Commun. Nonlinear Sci. Numer. Simul. 13, 235–242 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ariaratnam, S.T., Fofana, M.S.: The effects of nonlinearity in turning operation. J. Eng. Math. 42, 143–156 (2002)

    Article  MATH  Google Scholar 

  37. Das, S.L., Chatterjee, A.: Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323–335 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28(1), 1–21 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Nayfeh, A., Chin, C., Pratt, J.: Applications of perturbation methods to tool chatter dynamics. In: Moon, F.C. (ed.) Dynamics and Chaos in Manufacturing Processes, pp. 193–213. Wiley, New York (1997)

    Google Scholar 

  40. Wahi, P., Chatterjee, A.: Self-interrupted regenerative metal cutting in turning. Int. J. Non-Linear Mech. 43, 111–123 (2008)

    Article  Google Scholar 

  41. Wahi, P., Chatterjee, A.: Averaging oscillations with small fractional damping and delayed terms. Nonlinear Dyn. 38, 3–22 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nandakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandakumar, K., Wahi, P. & Chatterjee, A. Infinite dimensional slow modulations in a well known delayed model for cutting tool vibrations. Nonlinear Dyn 62, 705–716 (2010). https://doi.org/10.1007/s11071-010-9755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9755-x

Keywords

Navigation