Advertisement

Nonlinear Dynamics

, Volume 62, Issue 3, pp 601–608 | Cite as

Analysis of a spatial predator-prey model with delay

  • Biao Wang
  • Ai-Ling Wang
  • Yong-Jiang Liu
  • Zhao-Hua Liu
Original Paper

Abstract

In this paper, we present a Holling–Tanner model combined with diffusion and time delay. We found that, when time delay is small, there is no the synchronization of prey and the predator. However, when it is larger, there is antiphase synchronization. Furthermore, a transition from anti-phase synchronization to in-phase synchronization emerges as time delay further increases. Since synchronization of populations could lead them to be extinct, the results obtained may indicate that time delay plays an important role on the persistence of the populations.

Keywords

Holling–Tanner Time delay Spatial diffusion Synchrony Extinction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berryman, A.A.: The origins and evolutions of predator–prey theory. Ecology 73, 1530–1535 (1992) CrossRefGoogle Scholar
  2. 2.
    Zhu, H., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation analysis of a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 63(2), 636–682 (2003) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971) CrossRefGoogle Scholar
  4. 4.
    Freedman, H.I., Wolkowicz, G.S.K.: Predator-prey systems with group defence: The paradox of enrichment revisited. Bull. Math. Biol. 48, 493–508 (1986) MATHMathSciNetGoogle Scholar
  5. 5.
    Sun, G.-Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator-prey system. Nonlinear Dyn. 58, 75–84 (2009) MATHCrossRefGoogle Scholar
  6. 6.
    Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, New York (2003) MATHGoogle Scholar
  7. 7.
    Braza, P.A.: The bifurcation structure of the holling-tanner model for predator–prey interactions using two-timing. SIAM J. Appl. Math. 63, 889–904 (2003) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Collings, J.B.: Bifurcation and stability analysis of a temperature-dependent mite predator–prey interaction model incorporating a prey refuge. Bull. Math. Biol. 57, 63–76 (1995) MATHGoogle Scholar
  9. 9.
    Hsu, S.B., Huang, T.W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55, 763–783 (1995) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Wollkind, D., Collings, J., Logan, J.: Metastability in a temperature-dependent model system for predator prey mite outbreak interactions on fruit flies. Bull. Math. Biol. 50, 379–409 (1988) MATHMathSciNetGoogle Scholar
  11. 11.
    May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973) Google Scholar
  12. 12.
    Haque, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator–prey model. Theor. Popul. Biol. 70, 273–288 (2006) MATHCrossRefGoogle Scholar
  13. 13.
    Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993) MATHGoogle Scholar
  14. 14.
    Xiao, Y., Chen, L.: Modelling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ruan, S., Ardito, A., Ricciardi, P., Angelis, D.D.: Coexistence in competition models with density dependent mortality. C. R. Biol. 330, 845–854 (2007) CrossRefGoogle Scholar
  16. 16.
    Kar, T., Batabyal, A.: Stability and bifurcation of a prey-predator model with time delay. C. R. Biol. 332, 642–651 (2009) CrossRefGoogle Scholar
  17. 17.
    Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Dynamical complexity of a spatial predator–prey model with migration. Ecol. Model. 219, 248–255 (2008) CrossRefGoogle Scholar
  18. 18.
    Wang, R.-H., Liu, Q.-X., Sun, G.-Q., Jin, Z., van de Koppel, J.: Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds. J. R. Soc. Interface 6(37), 705–718 (2009) Google Scholar
  19. 19.
    Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., SetaLa, H., Symstad, A.J., Vandermeer, J., Wardle, D.A.: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75(1), 3–35 (2005) CrossRefGoogle Scholar
  20. 20.
    Chesson, P.: Mechanisms of maintenance of species diversity. Ann. Rev. Ecol. Syst. 31, 343–366 (1991) CrossRefGoogle Scholar
  21. 21.
    Hassell, M.P., Comins, H.N., Mayt, R.M.: Spatial structure and chaos in insect population dynamics. Nature 353, 255–258 (1991) CrossRefGoogle Scholar
  22. 22.
    Polis, G.A., Anderson, W.B., Holt, R.D.: Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Ann. Rev. Ecol. Syst. 28, 289–316 (1997) CrossRefGoogle Scholar
  23. 23.
    Lima, S.L.: Putting predators back into behavioral predator-prey interactions. Trends Ecol. Evol. 17, 70–75 (2002) CrossRefGoogle Scholar
  24. 24.
    Pascual, M.: Diffusion-induced chaos in a spatial predator-prey system. Proc. R. Soc. Lond. B 251, 1–7 (1993) CrossRefGoogle Scholar
  25. 25.
    Petrovskii, S., Li, B.-L., Malchow, H.: Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex. 1, 37–47 (2004) CrossRefGoogle Scholar
  26. 26.
    Namba, T., Hashimoto, C.: Dispersal-mediated coexistence of competing predators. Theor. Popul. Biol. 66, 53–70 (2004) MATHCrossRefGoogle Scholar
  27. 27.
    Morozov, A., Li, B.-L.: On the importance of dimensionality of space in models of space-mediated population persistence. Theor. Popul. Biol. 71, 278–289 (2007) MATHCrossRefGoogle Scholar
  28. 28.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. Cambridge University Press, Cambridge (2001) MATHCrossRefGoogle Scholar
  29. 29.
    Elton, C.S.: Periodic fluctuations in the numbers of animals. Br. J. Exp. Biol. 2, 119–163 (1924) Google Scholar
  30. 30.
    Elton, C.S., Nicholson, M.: The ten-year cycle in numbers of the lynx in Canada. J. Anim. Ecol. 11, 215–244 (1942) CrossRefGoogle Scholar
  31. 31.
    Moran, P.A.P.: The statistical analysis of the canadian lynx cycle. ii. Synchronisation and meteorology. Aust. J. Zool. 1, 291–298 (1953) CrossRefGoogle Scholar
  32. 32.
    Bulmer, M.G.: A statistical analysis of the 10-year cycle in Canada. J. Anim. Ecol. 43, 701–718 (1974) CrossRefGoogle Scholar
  33. 33.
    Smith, C.H.: Spatial trends in canadian snowshoe hare lepus americanus, population cycles. Can. Field-Nat. 97, 151–160 (1983) Google Scholar
  34. 34.
    Sinclair, A.R.E., Goseline, J.M., Holdsworth, G., Krebs, C.J., Boutin, S., Smith, N.M., Boonstra, R., Dale, M.: Can the solar cycle and climate synchronize the snowshoe hare cycle in Canada? Evidence from tree rings and ice cores. Am. Nat. 141, 173–198 (1993) CrossRefGoogle Scholar
  35. 35.
    Ranta, E., Kaitala, V., Lindstrom, J., Helle, E.: The Moran effect and synchrony in population dynamics. Oikos 78, 136–142 (1997) CrossRefGoogle Scholar
  36. 36.
    Colombo, A., Dercole, F., Rinaldi, S.: Remarks on metacommunity synchronization with application to prey-predator systems. Am. Nat. 171, 430–442 (2008) CrossRefGoogle Scholar
  37. 37.
    Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Pattern formation induced by cross-diffusion in a predator–prey system. Chin. Phys. B 17, 3936–3941 (2008) CrossRefGoogle Scholar
  38. 38.
    Holling, C.: The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 45, 3–60 (1965) Google Scholar
  39. 39.
    May, R.: Limit cycles in predator–prey communities. Science 177, 900–902 (1972) CrossRefGoogle Scholar
  40. 40.
    Saez, E., Gonzelez-Olivares, E.: Dynamics of a predator-prey model. SIAM J. Appl. Math. 59, 1867–1878 (1999) CrossRefGoogle Scholar
  41. 41.
    Tanner, J.: The stability and intrinsic growth rates of prey and predator populations. Ecology 56, 855–867 (1975) CrossRefGoogle Scholar
  42. 42.
    Underwood, N.C.: The timing of induced resistance and induced susceptibility in the soybean-mexican bean beetle system. Oecologia 114, 376–381 (1998) CrossRefGoogle Scholar
  43. 43.
    Koenig, W.D.: Spatial autocorrelation of ecological phenomena. Trends Ecol. Evol. 14, 22–26 (1999) CrossRefGoogle Scholar
  44. 44.
    Liebhold, A.M., Koenig, W.D., Bjonstad, O.N.: Spatial synchrony in population dynamics. Ann. Rev. Ecol. Evol. Syst. 35, 467–490 (2004) CrossRefGoogle Scholar
  45. 45.
    Higgins, K., Hastings, A., Sarvela, J.N., Botsford, L.W.: Stochastic dynamics and deterministic skeletons: population behavior of dungeness crab. Science 276, 1431–1435 (1997) CrossRefGoogle Scholar
  46. 46.
    Grenfell, B.T., Wilson, K., Finkenstadt, B.F., Coulson, T.N., Murray, S., Albon, S.D., Pemberton, J.M., Clutton-Brock, T.H., Crawley, M.J.: Noise and determinism in synchronized sheep dynamics. Nature 394, 674–677 (1998) CrossRefGoogle Scholar
  47. 47.
    Post, E., Forchhammer, M.C.: Synchronization of animal population dynamics by large-scale climate. Nature 420, 168–171 (2002) CrossRefGoogle Scholar
  48. 48.
    Allen, J., Schaffer, W., Rosko, D.: Chaos reduces species extinction by amplifying local population noise. Nature 364, 229–232 (1993) CrossRefGoogle Scholar
  49. 49.
    Beretta, E., Takeuchi, Y.: Global asymptotic stability of Lotka–Volterra diffusion models with continuous time delay. SIAM J. Appl. Math. 48, 627–651 (1988) MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Beretta, E., Solimano, F., Takeuchi, Y.: Global stability and periodic orbits for two-patch predator–prey diffusion–delay models. Math. Biosci. 85, 153–183 (1987) MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Zhou, L., Tang, Y., Hussein, S.: Stability and Hopf bifurcation for a delay competition diffusion system. Chaos Solitons Fractals 14, 1201–1225 (2002) MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Su, Y., Wei, J., Shi, J.: Hopf bifurcations in a reaction-diffusion population model with delay effect. J. Differ. Equ. 247, 1156–1184 (2009) MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Crauste, F., Hbid, M.L., Kacha, A.: A delay reaction-diffusion model of the dynamics of botulinum in fish. Math. Biosci. 216, 17–29 (2008) MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Morozov, A., Petrovskii, S., Li, B.-L.: Spatiotemporal complexity of patchy invasion in a predator–prey system with the allee effect. J. Theor. Biol. 238, 18–35 (2006) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Biao Wang
    • 1
  • Ai-Ling Wang
    • 1
  • Yong-Jiang Liu
    • 1
  • Zhao-Hua Liu
    • 1
  1. 1.Key Laboratory for AMT ShanxiNorth University of ChinaTaiyuanChina

Personalised recommendations