Advertisement

Nonlinear Dynamics

, Volume 62, Issue 1–2, pp 273–289 | Cite as

Backbone transitions and invariant tori in forced micromechanical oscillators with optical detection

  • Tuhin Sahai
Original Paper

Abstract

Micromechanical oscillators often display rich dynamics due to nonlinearities in their response, actuation, and detection. This paper investigates the complicated response of a forced micromechanical oscillator. In particular, we investigate a thermally induced transition in the resonant response of a forced micromechanical oscillator with optical detection; and the branches of invariant tori formed at subsequent bifurcations that occur with increasing laser power. We use perturbation theory and continuation algorithms to investigate and compute these branches of invariant tori. The results of both methods are compared.

Keywords

Micromechanical oscillators Resonance Softening Hardening Transitions Invariant tori Multiple scales Continuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldridge, J.S., Cleland, A.N.: Noise-enabled precision measurements of a Duffing nanomechanical resonator. Phys. Rev. Lett. 94, 156403 (2005) CrossRefGoogle Scholar
  2. 2.
    Ilic, B., Craighead, H.G., Czaplewski, D., Neuzil, P., Campagnolo, C., Batt, C.: Mechanical resonant immunospecific biological detector. Appl. Phys. Lett. 77, 450–452 (2000) CrossRefGoogle Scholar
  3. 3.
    Ekinci, K.L., Huang, X.M.H., Roukes, M.L.: Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84(22), 223–256 (2004) CrossRefGoogle Scholar
  4. 4.
    Cleland, A.N., Roukes, M.L.: A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998) CrossRefGoogle Scholar
  5. 5.
    Reichenbach, R.B., Zalalutdinov, M., Aubin, K.L., Rand, R., Houston, B., Parpia, J.M., Craighead, H.G.: 3rd order intermodulation in a micromechanical thermal mixer. J. Microelectromech. Syst. 14(6), 1244–1252 (2005) CrossRefGoogle Scholar
  6. 6.
    Lee, S., Demirci, M.U., Nguyen, C.T.C.: A 10-MHz micromechanical resonator Pierce reference oscillator for communications. In: Digest of Technical Papers, the 11th International Conference on Solid-State Sensors and Actuators (Transducers 01), Beijing, pp. 1094–1097 (2001) Google Scholar
  7. 7.
    Hoppensteadt, F.C., Izhikevich, E.M.: Synchronization of mems resonators and mechanical neurocomputing. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(2), 133–138 (2001) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Sahai, T., Zehnder, A.T.: Modeling of coupled dome-shaped micro-oscillators. IEEE/ASME J. Microelectromech. Syst. 17(3), 777–786 (2008) CrossRefGoogle Scholar
  9. 9.
    Turner, K.L., Miller, S.A., Hartwell, P.G., MacDonald, N.C., Strogatz, S.H., Adams, S.G.: Five parametric resonances in a microelectromechanical system. Nature 396, 149–152 (1998) CrossRefGoogle Scholar
  10. 10.
    Yu, M.F., et al.: Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope. Phys. Rev. B 66, 073406 (2002) CrossRefGoogle Scholar
  11. 11.
    Aubin, K., Zalalutdinov, M., Alan, T., Reichenbach, R., Rand, R., Zehnder, A., Parpia, J., Craighead, H.: Limit cycle oscillations in cw laser driven nems. J. Microelectromech. Syst. 13(6), 1018–1026 (2004) CrossRefGoogle Scholar
  12. 12.
    Zalalutdinov, M., Aubin, K.L., Pandey, M., Zehnder, A.T., Rand, R.H., Craighead, H.G., Parpia, J.M.: Frequency entrainment for micromechanical oscillator. Appl. Phys. Lett. 83(16), 3281–3283 (2003) CrossRefGoogle Scholar
  13. 13.
    Kaajakari, V., Lal, A.: Parametric excitation of circular micromachined polycrystalline silicon disks. Appl. Phys. Lett. 85(17), 3923–3925 (2004) CrossRefGoogle Scholar
  14. 14.
    Zhao, X., Dankowicz, H., Reddy, C.K., Nayfeh, A.H.: Modeling and simulation methodology for impact microactuators. J. Micromech. Microeng. 14, 775–784 (2004) CrossRefGoogle Scholar
  15. 15.
    Sahai, T., Bhiladvala, R., Zehnder, A.: Thermomechanical transitions in doubly-clamped micro-oscillators. Int. J. Nonlinear Mech. 42(4), 596–607 (2007) CrossRefGoogle Scholar
  16. 16.
    Doedel, E.J., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems, Part I. Int. J. Bifurc. Chaos 1(3), 493–520 (1991) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Doedel, E.J., Keller, H.B., Kernevez, J.P.: Numerical Analysis and Control of Bifurcation Problems, Part II. Int. J. Bifurc. Chaos 1(4), 745–772 (1991) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rand, R.: Lecture Notes on Nonlinear Vibrations. Cornell University Press, Ithaca (2003). Available at http://www.tam.cornell.edu/randdocs/ Google Scholar
  19. 19.
    Nayfeh, A.: Perturbation Methods, 1st edn. Wiley, New York (1973) MATHGoogle Scholar
  20. 20.
    Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods, 1st edn. Springer, Berlin (1996) MATHGoogle Scholar
  21. 21.
    Nayfeh, A.H.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40, 61–102 (2005) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations, 1st edn. Wiley, New York (1979) MATHGoogle Scholar
  23. 23.
    Das, S.L., Chatterjee, A.: Multiple scales without center manifold reduction for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30(4), 323–335 (2002) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1996) Google Scholar
  25. 25.
    Chua, L.O., Ushida, A.: Algorithms for computing almost periodic steady-state response of nonlinear systems to multiple input frequencies. IEEE Trans. Circuits Syst. 28(10), 953–971 (1981) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Díez, C., Jorba, À., Simó, C.: A dynamical equivalent to the equilateral libration points of the real earth-moon system. Celest. Mech. 50(1), 13–29 (1991) MATHCrossRefGoogle Scholar
  27. 27.
    Schilder, F., Osinga, H.M., Vogt, W.: Continuation of quasi-periodic invariant tori. SIAM J. Appl. Dyn. Syst. 4(3), 459–488 (2005) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Doedel, E.J., Fairgrieve, T.F., Champneys, A.R., Kuznetsove, Y.A., Sandstede, B., Wang, X.: Auto 97: Continuation and bifurcation software for ordinary differential equations (with homcont). AUTO97 Manual (1997) Google Scholar
  29. 29.
    Kevrekidis, I.G., Aris, R., Schmidt, L.D., Pelikan, S.: Numerical computation of invariant circle of maps. Physica D 16(2), 243–251 (1985) MATHMathSciNetGoogle Scholar
  30. 30.
    Rabinowitz, P.: Numerical Methods for Nonlinear Algebraic Equations. Gordon & Breach, New York (1970) MATHGoogle Scholar
  31. 31.
    Brent, R.P.: Algorithms for Minimization Without Derivatives. Prentice Hall, Englewood Cliffs (1975) Google Scholar
  32. 32.
    Knuth, D.: The Art of Computer Programming, Vol. I, 2nd edn. Addison-Wesley, Reading (1973) Google Scholar
  33. 33.
    Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations, 1st edn. McGraw-Hill, New York (1955) MATHGoogle Scholar
  34. 34.
    Aronson, D.G., Chory, M.A., Hall, G.R., McGehee, R.P.: Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study. Commun. Math. Phys. 83(3), 303–354 (1982) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.United Technologies Research CenterEast HartfordUSA

Personalised recommendations