Skip to main content
Log in

Lie symmetries of geodesic equations and projective collineations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We prove a theorem which relates the Lie symmetries of the geodesic equations in a Riemannian space with the collineations of the metric. We apply the results to Einstein spaces and spaces of constant curvature. Finally with examples we show the use of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aminova, A.V.: Automorphisms of geometric structures as symmetries of differential equations. Izv. Vyssh. Uchebn. Zaved., Mat. 2, 3–10 (1994) (in Russian)

    Google Scholar 

  2. Aminova, A.V.: Projective transformations and symmetries of differential equations. Sb. Math. 186(12), 1711–1726 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aminova, A.V., Aminov, N.A.-M.: Projective geometry of systems of differential equations: general conceptions. Tensor (N.S.) 62, 65–86 (2000)

    MATH  MathSciNet  Google Scholar 

  4. Aminova, A.V.: Concircular vector fields and group symmetries in spaces of constant curvature. Gravit. Teor. Otn. 14, 4–16 (1978) (in Russian)

    MathSciNet  Google Scholar 

  5. Feroze, T., Mahomed, F.M., Qadir, A.: The connection between isometries and symmetries of geodesic equations of the underlying spaces. Nonlinear Dyn. 45, 65–74 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Prince, G.E., Crampin, M.: Projective differential geometry and geodesic conservation laws in general realtivity. I: Projective actions. Gen. Relativ. Gravit. 16, 921 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Yano, K.: The Theory of Lie Derivatives and Its Applications. North Holland, Amsterdam (1956)

    Google Scholar 

  8. Stephani, H.: Differential Equations: Their Solutions Using Symmetry. Cambridge University Press, New York (1989)

    Google Scholar 

  9. Scouten, K.J.A.: Ricci Calculus. Springer, Berlin (1954)

    Google Scholar 

  10. Tsamparlis, M., Nikolopoulos, D., Apostolopoulos, P.S.: Computation of the conformal algebra of 1+3 decomposable spacetimes. Class. Quantum Gravity 15, 2909 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Barnes, A.: Projective collineations in Einstein spaces. Class. Quantum Gravity 10, 1139–1145 (1993)

    Article  MATH  Google Scholar 

  12. Qadir, A.: Geometric linearization of ordinary differential equations. Symmetry Integrability Geom.: Methods Appl. (SIGMA) 3, 103–109 (2007)

    MathSciNet  Google Scholar 

  13. Mahomed, F.M., Qadir, A.: Linearization criteria for systems of cubically semi-linear second order differential equations. J. Nonlinear Math. Phys. 16, 1–16 (2009)

    MathSciNet  Google Scholar 

  14. Hall, G.S., da Costa, J.: Affine collineations in space-time. J. Math. Phys. 29, 2465–2472 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tsamparlis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsamparlis, M., Paliathanasis, A. Lie symmetries of geodesic equations and projective collineations. Nonlinear Dyn 62, 203–214 (2010). https://doi.org/10.1007/s11071-010-9710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9710-x

Keywords

Navigation