Nonlinear Dynamics

, Volume 61, Issue 4, pp 579–590 | Cite as

Complex dynamics analysis for a duopoly model of common fishery resource

Original Paper


In this paper, we formulate a dynamical model of commercial exploitations of renewable resources by assuming that two agents behave adaptively, following a bounded rationality adjustment process based on a local estimate of the marginal profit. We study the existence and the stability of the positive equilibrium characterizing the sustainable use of the renewable resource. Then we investigate the local bifurcations of the system through numerical simulation. We discover when one player accelerates the adjustment speed in order to achieve initial advantage, it may cause complex phenomena like quasi-period and chaos. Finally, we investigate a degraded two-dimensional system by showing the influence of the adjustment speed of the harvesting quantity on the set of initial conditions which give non-negative trajectories (called a feasible set). We find that higher adjustment speed may easily exhaust the resources.


Dynamical model of fish stock Bounded rationality Stability of the positive equilibrium Neimak–Sacker bifurcation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark, C.W.: Mathematical Bioeconomics—The Optimal Management of Renewable Resource, 2nd edn. Wiley Interscience, New York (1990) Google Scholar
  2. 2.
    Haddon, M.: Modeling and Qualitative Methods in Fisheries. CRC Press, New York (2001) Google Scholar
  3. 3.
    Pauly, D., Alder, J., Bennett, E., Christensen, V., Tyedmers, P., Watson, R.: The future for fisheries. Science 302, 1359–1361 (2003) CrossRefGoogle Scholar
  4. 4.
    Myers, R., Worm, B.: Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003) CrossRefGoogle Scholar
  5. 5.
    Branch, T.A., Hilborn, R., Haynie, A.C., Fay, G., Flynn, L., Griffiths, J., Marshall, K.N., Randall, J.K., Scheuerell, J.M., Ward, E.J., Young, M.: Fleet dynamics and fishermen behavior: lessons for fisheries managers. Can. J. Fish. Aquat. Sci. 63, 1647–1668 (2006) CrossRefGoogle Scholar
  6. 6.
    Munro, G.R.: The optimal management of transboundary renewable resources. Can. J. Econ. 12, 355–376 (1979) CrossRefGoogle Scholar
  7. 7.
    Levhari, D., Mirman, L.J.: The great fish war: an example using a dynamic Cournot–Nash solution. Bell J. Econ. 11, 322–334 (1980) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Munro, G.: The optimal management of transboundary fisheries: game theoretic considerations. Nat. Resour. Model. 4, 403–426 (1990) MATHMathSciNetGoogle Scholar
  9. 9.
    Bischi, G.I., Lamantia, F.: Harvesting dynamics in protected and unprotected areas. J. Econ. Behav. Organ. 62, 384–370 (2007) Google Scholar
  10. 10.
    Hanneson, R.: Sequential fishing: cooperative and non-cooperative equilibria. Nat. Resour. Model. 9, 51–59 (1995) Google Scholar
  11. 11.
    McKelvey, R.: Game theoretic insight into the international management of fisheries. Nat. Resour. Model. 10, 129–171 (1997) MATHMathSciNetGoogle Scholar
  12. 12.
    Mesterton-Gibbons, M.: Game-theoretic resource modeling. Nat. Resour. Model. 7, 93–147 (1993) MATHMathSciNetGoogle Scholar
  13. 13.
    Szidarovszky, F., Okuguchi, K.: An oligopoly model of commercial fishing. Seoul J. Econ. 11, 321–330 (1998) Google Scholar
  14. 14.
    Szidarovszky, F., Okuguchi, K.: A dynamic model of international fishing. Seoul J. Econ. 13, 471–476 (2002) MathSciNetGoogle Scholar
  15. 15.
    Bischi, G.I., Kopel, M., Szidarovszky, F.: Expectation-stock dynamics in multi-agent fisheries. Ann. Oper. Res. 137, 299–329 (2005) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Bischi, G.I., Naimzada, A.: Global analysis of a dynamic duopoly game with bounded rationality. Dyn. Games Appl. 5, 361–385 (1999) MathSciNetGoogle Scholar
  17. 17.
    Agiza, H.N., Hegazi, A.S., Elsadany, A.A.: Complex dynamics and synchronization of a duopoly game with bounded rationality. Math. Comput. Simul. 58, 133–146 (2002) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Agiza, H.N., Hegazi, A.S., Elsadany, A.A.: The dynamics of Bowley’s model with bounded rationality. Chaos Solitons Fractals 12, 1705–1717 (2001) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Williamson, O.E.: The Economic Institutions of Capitalism: Firms, Markets, Relational Contracting. Social Sciences Publishing House, Beijing (1999) Google Scholar
  20. 20.
    Yao, H.X., Xu, F.: Complex dynamics analysis for a duopoly advertising model with nonlinear cost. Appl. Math. Comput. 180, 134–145 (2006) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Schaefer, M.B.: Some aspects of the dynamics of populations important to the management of commercial marine fisheries. Bull. Inter-Am. Trop. Tuna Comm. 1, 27–56 (1954) Google Scholar
  22. 22.
    Robinson, R.C.: An Introduction to Dynamical Systems: Continuous and Discrete. Pearson/Prentice Hall, New Jersey (2004) MATHGoogle Scholar
  23. 23.
    Gu, E.G.: Global analysis of an ecological populational model with an external interference. Chaos Solitons Fractals 32, 224–233 (2007) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Gu, E.G.: The feasible domains and their bifurcations in an extended Logistic model with an external interference. Int. J. Bifurc. Chaos 17, 877–889 (2007) MATHCrossRefGoogle Scholar
  25. 25.
    Gu, E.G., Hao, Y.D.: On the global analysis of dynamics in a delayed regulation model with an external interference. Chaos Solitons Fractals 34, 1272–1284 (2007) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Gu, E.G.: Global bifurcations of domains of feasible trajectories: analysis of a predator-prey model. Int. J. Bifurc. Chaos 16, 2601–2613 (2006) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.College of Mathematics and StatisticsSouth-Central University for NationalitiesWuhanP.R. China

Personalised recommendations