Nonlinear Dynamics

, Volume 63, Issue 4, pp 549–557 | Cite as

Parameter identification of electronic throttle using a hybrid optimization algorithm

  • Xiaofang Yuan
  • Shutao Li
  • Yaonan Wang
  • Wei Sun
  • Lianghong Wu
Original Paper


Aiming at the problems in parameter identification of an electronic throttle, this paper proposes a novel hybrid optimization algorithm to search the optimal parameter values of the plant. The parameter identification of an electronic throttle is considered as an optimization process with an objective function minimizing the errors between the measurement and identification, and the optimal parameter values of the plant are searched by using a hybrid optimization algorithm. The proposed hybrid optimization algorithm, effective combination of parallel chaos optimization algorithm (PCOA) and simplex search method, preserves both the global optimization capability of PCOA and the accurate search ability of simplex search method. Simulation and experiment results have shown the good performance of the proposed approach.


Parameter identification Optimization algorithm Electronic throttle Chaos optimization algorithm (COA) Simplex search method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yuan, X.F., Wang, Y.N., Wu, L.H.: SVM based approximate model control for electronic throttle valve. IEEE Trans. Veh. Technol. 57(5), 2747–2756 (2008) CrossRefGoogle Scholar
  2. 2.
    Yuan, X.F., Wang, Y.N.: A novel electronic throttle valve controller based on approximate model method. IEEE Trans. Ind. Electron. 56(3), 883–890 (2009) CrossRefGoogle Scholar
  3. 3.
    Pavkovic, D., Deur, J., Jansz, M., Peric, N.: Adaptive control of automotive electronic throttle. Control Eng. Pract. 14(2), 121–136 (2006) CrossRefGoogle Scholar
  4. 4.
    Kim, D., Peng, H., Bai, S., Maguire, J.M.: Control of integrated powertrain with electronic throttle and automatic transmission. IEEE Trans. Control Syst. Technol. 15(3), 474–482 (2007) CrossRefGoogle Scholar
  5. 5.
    Loh, R.N.K., Pornthanomwong, T., Pyko, J.S., Lee, A., Karsiti, M.N.: Modeling, parameters identification, and control of an electronic throttle control (ETC) system. In: Proceedings of 2007 International Conference on Intelligent and Advanced Systems (ICIAS 2007), vol. 1, pp. 1029–1035. Kuala Lumpur, Malaysia (2007) Google Scholar
  6. 6.
    Nakano, K., Sawut, U., Higuchi, K., Okajima, Y.: Modelling and observer-based sliding-mode control of electronic throttle systems. ECTI Trans. Electr. Eng., Electron. Commun. 4(1), 22–28 (2006) Google Scholar
  7. 7.
    Vasak, M., Mladenovic, L., Peric, N.: Clustering-based identification of a piecewise affine electronic throttle model. In: Proceedings of 31st Annual Conference of IEEE Industrial Electronics Society, vol. 1, pp. 177–182. Raleigh, NC, USA (2005) Google Scholar
  8. 8.
    Yuan, X.F., Wang, Y.N.: Parameter selection of support vector machine for function approximation based on chaos optimization. J. Syst. Eng. Electron. 19(1), 191–197 (2008) Google Scholar
  9. 9.
    E, J.Q., Wang, C.H., Wang, Y.N., Gong, J.K.: A new adaptive mutative scale chaos optimization algorithm and its application. J. Control Theory Appl. 6(2), 141–145 (2008) MATHCrossRefGoogle Scholar
  10. 10.
    Yang, D.X., Li, G., Cheng, G.D.: On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34(4), 1366–1375 (2007) CrossRefGoogle Scholar
  11. 11.
    Sugata, H., Shimizu, K.: Global optimization using chaos in a quasi-steepest descent method. Electron. Commun. Jpn., Part III: Fundam. Electron. Sci. 80(4), 60–70 (1998) Google Scholar
  12. 12.
    Mishra, N., Choudhary, A.K., Tiwari, M.K.: Modeling the planning and scheduling across the outsourcing supply chain: a chaos-based fast tabu–SA approach. Int. J. Prod. Res. 46(13), 3683–3715 (2008) MATHCrossRefGoogle Scholar
  13. 13.
    Cheng, C.-T., Wang, W.-C., Xu, D.-M., Chau, K.W.: Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resour. Manag. 22(7), 895–909 (2008) CrossRefGoogle Scholar
  14. 14.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Xiaofang Yuan
    • 1
  • Shutao Li
    • 1
  • Yaonan Wang
    • 1
  • Wei Sun
    • 1
  • Lianghong Wu
    • 1
  1. 1.College of Electrical and Information EngineeringHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations