Nonlinear Dynamics

, Volume 61, Issue 1–2, pp 109–121 | Cite as

Vibration reduction of multi-parametric excited spring pendulum via a transversally tuned absorber

  • M. Eissa
  • M. Kamel
  • A. T. El-Sayed
Original Paper


The use of passive control strategy is a common way to stabilize and control dangerous vibrations in a nonlinear spring pendulum which is describing the ship’s roll motion. In this paper, a tuned absorber in the transversal direction is connected to a spring pendulum with multi-parametric excitation forces to control the vibration due to some resonance cases on the system. The method of multiple scale perturbation technique (MSPT) is applied to study the periodic solution of the given system near simultaneous sub-harmonic and internal resonance case. The stability of the steady-state solution near the resonance case is investigated and studied using frequency response equations. The effects of the absorber and some system parameters on the vibrating system are studied numerically. Optimal working conditions of the system are extracted when applying passive control methods. Comparison with the available published work is reported.

Nonlinearity Passive control Stability Pitch and roll motion 


cj (j=1,2,3,4)

the damping coefficient of the spring pendulum modes and the absorber ( \(c_{j}=\varepsilon\hat{c}_{j}\) )

ω1,ω2 and ω3

the natural frequency of the spring pendulum modes and absorber


the nonlinear parameters ( \(\beta_{1}=\varepsilon\hat{\beta}_{1})\)


the forcing amplitude of the main system ( \(f_{j}=\varepsilon^{2}\hat{f}_{j})\)


the frequencies of the main system


a small perturbation parameter


the gravity acceleration


the masses of the spring pendulum and absorber, respectively


statically stretched length of the pendulum


statically stretched length of the absorber


the longitudinal response of the spring pendulum ( \(x=\bar{x}/l\) )


the longitudinal response of the absorber ( \(u=\bar{u}/l\) )


the angular response of the pendulum


the linear stiffness of the spring pendulum and the absorber

ki (i=3,4,5,6)

the spring stiffness of nonlinear parameters


a moment acts at the point O


a force acts on mass M in the x direction


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mwad, D.J.: Passive Vibration Control. Wiley, Chichester (1988) Google Scholar
  2. 2.
    Meirovitch, L.: Fundamental of Vibrations. McGraw-Hill, New York (2001) Google Scholar
  3. 3.
    Nayfeh, A.H., Mook, D.T., Marshell, A.R.: Nonlinear coupled of pitch and roll modes in ship motions. J. Hydronaut. 7(4), 145–152 (1973) CrossRefGoogle Scholar
  4. 4.
    Tondl, A., Nabergoj, R.: Dynamic absorbers for an externally excited pendulum. J. Sound Vib. 234(4), 611–624 (2000) CrossRefGoogle Scholar
  5. 5.
    Lee, W.K.: A global analysis of a forced spring–pendulum system. Ph.D. Dissertation, University of California, Berkeley (1988) Google Scholar
  6. 6.
    Lee, W.K., Hsu, C.S.: A global analysis of a harmonically excited spring–pendulum system with internal resonance. J. Sound Vib. 171(3), 335–359 (1994) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lee, W.K., Park, H.D.: Chaotic dynamics of a harmonically excited spring pendulum system with internal resonance. J. Non-linear Dyn. 14, 211–229 (1997) MATHGoogle Scholar
  8. 8.
    Lee, W.K., Park, H.D.: Second order approximation for chaotic responses of a harmonically excited spring–pendulum system. Int. J. Non-Linear Mech. 34, 749–757 (1999) MATHCrossRefGoogle Scholar
  9. 9.
    Eissa, M.: Vibration control of non-linear mechanical system via a neutralizer. Electronic Bulletin No 16, Faculty of Electronic Engineering Menouf, Egypt, July (1999) Google Scholar
  10. 10.
    Eissa, M., EL-Serafi, S., EL-Sheikh, M., Sayed, M.: Stability and primary simultaneous resonance of harmonically excited non-linear spring–pendulum system. Appl. Math. Comput. 145, 421–442 (2003) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Eissa, M., Sayed, M.: A comparison between active and passive vibration control of non-linear simple pendulum, Part I: Transversally tuned absorber and negative \(G\dot{\varphi}^{n}\) feedback. Math. Comput. Appl. 11(2), 137–149 (2006) MATHMathSciNetGoogle Scholar
  12. 12.
    Eissa, M., Sayed, M.: A comparison between active and passive vibration control of non-linear simple pendulum, Part II: Longitudinal tuned absorber and negative \(G\ddot{\varphi}\) and G φ n feedback. Math. Comput. Appl. 11(2), 151–162 (2006) MATHMathSciNetGoogle Scholar
  13. 13.
    Sayed, M.: Improving the mathematical solutions of non-linear differential equations using different control methods. Ph.D. Thesis, Department of Mathematics, Faculty of Science, Menoufia, Egypt (2006) Google Scholar
  14. 14.
    Eissa, M., Sayed, M.: Vibration reduction of a three-DOF non-linear spring pendulum. Commun. Nonlinear Sci. Numer. Simul. 13, 465–488 (2008) MATHCrossRefGoogle Scholar
  15. 15.
    Ayaz, Z., Vassalos, D., Turan, O.: Parametrical studies of a new numerical model for controlled ship motions in extreme astern seas. J. Marine Sci. Technol. 11, 19–38 (2006) CrossRefGoogle Scholar
  16. 16.
    Lee, D., Hong, S.Y., Lee, G.J.: Theoretical and experimental study on dynamic behavior of a damaged ship in waves. Ocean Eng. 34, 21–31 (2007) CrossRefGoogle Scholar
  17. 17.
    Bayly, P.V., Virgin, L.N.: An empirical study of the stability of periodic motion in the forced spring–pendulum. Proc. R. Soc. Lond. A 443, 391–408 (1993) MATHCrossRefGoogle Scholar
  18. 18.
    Kamel, M.M.: Bifurcation analysis of a nonlinear coupled pitch–roll ship. Math. Comput. Simul. 73, 300–308 (2007) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Zhou, L., Chen, F.: Stability and bifurcation analysis for a model of a nonlinear coupled pitch–roll ship. Math. Comput. Simul. 79, 149–166 (2008) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Song, Y., Sato, H., Iwata, Y., Komatsuzaki, T.: The response of a dynamic vibration absorber system with a parametrically excited pendulum. J. Sound Vib. 259(4), 747–759 (2003) CrossRefGoogle Scholar
  21. 21.
    Amer, T.S., Bek, M.A.: Chaotic responses of a harmonically excited spring pendulum moving in circular path. J. Nonlinear Anal. 10, 3196–3202 (2009) MATHMathSciNetGoogle Scholar
  22. 22.
    Alasty, A., Shabani, R.: Chaotic motions and fractal basin boundaries in spring–pendulum system. J. Nonlinear Anal. 7, 81–95 (2006) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Vyas, A., Bajaj, K.: Dynamics of auto-parametric vibration absorbers using multiple pendulums. J. Sound Vib. 246(1), 115–135 (2001) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Osama, A.M., Nayfeh, A.H.: Control of ship roll using passive and active anti-roll tanks. Ocean Eng. 36, 661–671 (2009) CrossRefGoogle Scholar
  25. 25.
    Kamel, M., Eissa, M., EL-Sayed, A.T.: Vibration reduction of a non-linear spring pendulum under multi-parametric excitations via a longitudinal absorber. Phys. Scr. 80, 025005 (2009) (12 pp.) CrossRefGoogle Scholar
  26. 26.
    Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Engineering Mathematics, Faculty of Electronic Engineering MenoufMenoufia UniversityMenoufEgypt
  2. 2.Department of Basic SciencesModern Academy for Engineering and TechnologyMaadiEgypt

Personalised recommendations