Nonlinear Dynamics

, Volume 60, Issue 4, pp 561–574 | Cite as

Nonlinear boundary control of the unforced generalized Korteweg–de Vries–Burgers equation

  • Nejib Smaoui
  • Alaa El-Kadri
  • Mohamed Zribi
Original Paper


In this paper, we consider the boundary control problem of the unforced generalized Korteweg–de Vries–Burgers (GKdVB) equation when the spatial domain is [0,1]. Three control laws are derived for this equation and the L 2-global exponential stability of the solution is proved analytically. Numerical results using the finite element method (FEM) are presented to illustrate the developed control schemes.


Unforced generalized Korteweg–de Vries–Burgers equation Boundary control Global stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amick, C.J., Bona, J.L., Schonbek, M.E.: Decay of solutions of some nonlinear wave equations. J. Differ. Equ. 81, 1–49 (1989) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Armaou, A., Christofides, P.D.: Wave suppression by nonlinear finite dimensional control. Chem. Eng. Sci. 55, 2627–2640 (2000) CrossRefGoogle Scholar
  3. 3.
    Baker, J., Christofides, P.D.: Finite dimensional approximation and control of non-linear parabolic PDE systems. Int. J. Control 73(5), 439–456 (2000) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Balogh, A., Krstic, M.: Boundary control of the Korteweg–de Vries–Burgers equation: further results on stabilization and well posedness, with numerical demonstration. IEEE Trans. Automat. Control 45, 1739–1745 (2000) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Biler, P.: Asymptotic behaviour in time of solutions to some equations generalizing the Korteweg–de Vries–Burgers equation. Bull. Pol. Acad. Sci. Math. 32(5–6), 275–282 (1984) MATHMathSciNetGoogle Scholar
  6. 6.
    Biler, P.: Large-time behaviour of periodic solutions to dissipative equations of Korteweg–de Vries–Burgers type. Bull. Pol. Acad. Sci. Math. 32(7–8), 401–405 (1984) MATHMathSciNetGoogle Scholar
  7. 7.
    Bona, J.L., Dougalis, V.A., Karakashian, O.A., McKinney, W.R.: The effect of dissipation on solutions of the generalized Korteweg–de Vries equations. J. Comput. Appl. Math. 74, 127–154 (1996) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bona, J.L., Luo, L.: Decay of solutions to nonlinear, dispersive wave equations. Differ. Integral Equ. 6(5), 961–980 (1993) MATHMathSciNetGoogle Scholar
  9. 9.
    Bona, J.L., Sun, S.M., Zhang, B.-Y.: A non-homogeneous boundary-value problem for Korteweg–de Vries equation in a quarter plane. Trans. Am. Math. Soc. 354(2), 427–490 (2001) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bona, J.L., Sun, S.M., Zhang, B.-Y.: A non-homogeneous boundary-value problem for Korteweg–de Vries equation posed on a finite domain. Commun. Partial Differ. Equ. 28(7–8), 1391–1436 (2003) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Burgers, T.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948) CrossRefMathSciNetGoogle Scholar
  12. 12.
    González, A., Castellanos, A.: Korteweg–de Vries–Burgers equation for surface waves in nonideal conducting liquids. Phys. Rev. E 49(4), 2935–2940 (1994) CrossRefGoogle Scholar
  13. 13.
    Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981) MATHGoogle Scholar
  14. 14.
    Jeffrey, A., Kakutani, T.: Weak nonlinear dispersive waves: a discussion centered around the Korteweg–de Vries equation. SIAM Rev. 14(4), 582–643 (1972) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jonshon, R.S.: Shallow water waves on a viscous fluid—the undular bore. Phys. Fluids 15, 1693–1699 (1972) CrossRefGoogle Scholar
  16. 16.
    Krstic, M.: On global stabilization of Burgers’ equation by boundary control. Syst. Control Lett. 37, 123–142 (1999) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Liu, G., Duan, G.: Stationary wave solution for equations of longitudinal wave in a nonlinear elastic rod. J. Henan Norm. Univ. Natur. Sci. 29, 101–103 (2001) MathSciNetGoogle Scholar
  18. 18.
    Liu, W.-J., Krstic, M.: Controlling nonlinear water waves: boundary stabilization of the Korteweg–de Vries–Burgers equation. In: Proc. Am. Control Conf., vol. 3, pp. 1637–1641 (1999) Google Scholar
  19. 19.
    Liu, W.-J., Krstic, M.: Adaptive control of Burgers’ equation with unknown viscosity. Int. J. Adapt. Control Signal Process. 15, 745–766 (2001) MATHCrossRefGoogle Scholar
  20. 20.
    Liu, W.-J., Krstic, M.: Global boundary stabilization of the Korteweg–de Vries–Burgers equation. Comput. Appl. Math. 21, 315–354 (2002) MATHMathSciNetGoogle Scholar
  21. 21.
    Miura, R.M.: The Korteweg–de Vries equation: a survey of results. SIAM Rev. 18(3), 412–459 (1976) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Smaoui, N.: Nonlinear boundary control of the generalized Burgers equation. Nonlinear Dyn. 37, 75–86 (2004) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Smaoui, N.: Controlling the dynamics of Burgers equation with a higher order nonlinearity. Int. J. Math. Math. Sci. 2004(62), 3321–3332 (2004) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Smaoui, N.: Boundary and distributed control of the viscous Burgers equation. J. Comput. Appl. Math. 182, 91–104 (2005) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Smaoui, N., Al-Jamal, R.: A nonlinear boundary control for the dynamics of the generalized Korteweg–de Vries–Burgers equation. Kuwait J. Sci. Eng. 34, 57–76 (2007) MathSciNetGoogle Scholar
  26. 26.
    Smaoui, N., Al-Jamal, R.: Boundary control of the generalized Korteweg–de Vries–Burgers equation. Nonlinear Dyn. 51(3), 439–446 (2008) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Zhang, B.-Y.: Boundary stabilization of the Korteweg–de Vries equation, in control and estimation of distributed parameter systems: nonlinear phenomena. Int. Ser. Numer. Math. 118, 371–389 (1994) Google Scholar
  28. 28.
    Zheng, X.-D., Xia, T.-C., Zhang, H.-Q.: New exact traveling wave solutions for compound KdV–Burgers equations in mathematical physics. Appl. Math. E-Notes 2, 45–50 (2002) MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceKuwait UniversitySafatKuwait
  2. 2.Department of Electrical EngineeringKuwait UniversitySafatKuwait

Personalised recommendations