Advertisement

Nonlinear Dynamics

, 59:173 | Cite as

The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability

  • Remco I. Leine
Original Paper

Abstract

A brief historical overview is given which discusses the development of classical stability concepts, starting in the seventeenth century and finally leading to the concept of Lyapunov stability at the beginning of the twentieth century. The aim of the paper is to find out how various scientists thought about stability and to which extent their work is related to the stability concepts bearing their names, i.e. Lagrange, Poisson and Lyapunov stability. To this end, excerpts of original texts are discussed in detail. Furthermore, the relationship between the various works is addressed.

Keywords

History of mechanics Stability theory Torricelli’s axiom Lyapunov Lagrange–Dirichlet stability theorem 

References

  1. 1.
    Barrow-Green, J.: Poincaré and the Three-Body Problem. History of Mathematics, vol. 11. American Mathematical Society, Providence (1997) MATHGoogle Scholar
  2. 2.
    Bennet, S.: A History of Control Engineering 1800–1930. Peter Peregrinus, Stevenage (1979) Google Scholar
  3. 3.
    Bernoulli, D.: Commentationes de statu aequilibrii corporum humido insidentium. Comment. Acad. Scient. Imp. Petrop. X, 147–163 (1738) (1747) Google Scholar
  4. 4.
    Bissel, C.C.: Stodola, Hurwitz and the genesis of the stability criterion. Int. J. Control 50(6), 2313–2332 (1989) CrossRefGoogle Scholar
  5. 5.
    Bissel, C.C.: Russian and soviet contributions to the development of control engineering: a celebration of the Lyapunov centenary. Trans. Inst. Meas. Control 14(4), 170–178 (1992) CrossRefGoogle Scholar
  6. 6.
    Bouguer, P.: Traité du Navire, de sa Construction et de ses Mouvemens. Jombert, Paris (1746) Google Scholar
  7. 7.
    Crone, E., Dijksterhuis, E.J., Forbes, R.J., Minnaert, M.G.J., Pannekoek, A.: The principal works of Simon Stevin. Swets & Zeitlinger, Amsterdam (1955) Google Scholar
  8. 8.
    Darrigol, O.: Stability and instability in nineteenth-century fluid mechanics. Rev. Hist. Math. 8, 5–65 (2002) MATHMathSciNetGoogle Scholar
  9. 9.
    Dijksterhuis, E.J.: De Mechanisering van het Wereldbeeld. Meulenhoff, Amsterdam (2000) (1950) Google Scholar
  10. 10.
    Euler, L.: Methodus inveniendi lineas curvas maximi minive proprietate gaudentes. Bousquet, Lausanne & Geneva (1744) Google Scholar
  11. 11.
    Euler, L.: Scientia navalis seu tractatus de construendis ac dirigendis, volumes 1 and 2. Academiae Scientarum, St. Petersburg (1749) Google Scholar
  12. 12.
    Fraser, C.G.: Mathematical technique and physical conception in Euler’s investigation of the elastica. Centaurus 34(3), 211–246 (1991) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fuller, A.T.: Lyapunov centenary issue. Int. J. Control 55(3), 521–527 (1992) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fuss, P.H.: Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIème siècle, Tome II. The Sources of Science, vol. 35. Johnson reprint corporation, New York (1968), originally printed in St. Pétersbourg 1843 Google Scholar
  15. 15.
    Gray, J.J.: Poincaré, topological dynamics, and the stability of the solar system. In: Harman, P.M., Shapiro, A.E. (eds.) The Investigation of Difficult Things: Essays on Newton and the History of the Exact Sciences in Honour of D.T. Whiteside, pp. 503–524. Cambridge University Press, Cambridge (1992) Google Scholar
  16. 16.
    Harman, P.M.: The Scientific Letters and Papers of James Clerk Maxwell, vols. 1–3. Cambridge University Press, Cambridge (1990) (1995) (2002) Google Scholar
  17. 17.
    Huygens, C.: De iis quae liquido supernatant libri tres, 1650. In: Œuvres Complètes de Christiaan Huygens, Tome 11. Martinus Nijhoff, Dordrecht (1908). The Hague, 1650 Google Scholar
  18. 18.
    Jacobi, C.G.J.: Vorlesungen über Dynamik (edited by A. Clebsch, reprinted by Chelsea, New York, 1969), Berlin (1866) Google Scholar
  19. 19.
    Jury, E.I.: Remembering four stability theory pioneers of the nineteenth century. IEEE Trans. Automat. Contr. 43(10), 821–823 (1996) MathSciNetGoogle Scholar
  20. 20.
    Lagrange, J.L.: Sur le mouvement des nœuds des orbites planétaires. Mémoires de l’Académie Royale des Sciences et Belles-Lettres, Année 1774, 276–307 (1776) Google Scholar
  21. 21.
    Lagrange, J.L.: Méchanique Analytique. La Veuve Desaint, Paris (1788) Google Scholar
  22. 22.
    Laplace, P.S.: Sur le principe de la gravitation universelle et sur les inégalités séculaires des planètes qui en dépendent. In: Œuvres Complètes de Laplace, Tome VIII, pp. 201–275. Gauthier-Villars, Paris (1773) (1841) Google Scholar
  23. 23.
    Laplace, P.S.: Sur l’équation séculaire de la lune. Mémoires de l’Académie Royale des Sciences de Paris, Année 1786, 243–271 (1788) Google Scholar
  24. 24.
    Laplace, P.S.: Traité de mécanique céleste, Tome IV. Coucier, Paris (1825) Google Scholar
  25. 25.
    Laplace, P.S.: Exposition du système du monde. Bachelier, Paris (1836) Google Scholar
  26. 26.
    Lützen, J.: Joseph Liouville’s work on the figures of equilibrium of a rotating mass of fluid. Arch. History Exact Sci. 30(2), 113–166 (1984) MATHCrossRefGoogle Scholar
  27. 27.
    Lejeune-Dirichlet, J.P.G.: Über die Stabilität des Gleichgewichts. CRELLE, J. Reine Angew. Math. 32, 85–88 (1846) Google Scholar
  28. 28.
    Leonov, G.A., Burkin, I.M., Shepeljavyi, A.I.: Frequency Methods in Oscillation Theory. Mathematics and its Applications, vol. 357. Kluwer Academic, Dordrecht (1996) MATHGoogle Scholar
  29. 29.
    Liapounoff, A.: Problème général de la stabilité du mouvement. Annales de la faculté des sciences de Toulouse, 2e série 9, 203–474 (1907) MathSciNetGoogle Scholar
  30. 30.
    Linsebarth, H.: Abhandlungen über das Gleichgewicht und die Schwingungen der ebenen elastischen Kurven. Ostwald’s Klassiker der Exakten Wissenschaften, vol. 175. Wilhelm Engelmann, Leipzig (1910) Google Scholar
  31. 31.
    Liouville, J.: Sur la stabilité de l’équilibre des mers. C. R. Acad. Sci. Paris 15, 903–907 (1842) Google Scholar
  32. 32.
    Loriá, A., Panteley, E.: Stability, told by its developers. In: Loriá, A., Lamnabhi-Lagarrigue, F., Panteley, E. (eds.) Advanced Topics in Control Systems Theory. Lecture Notes in Control and Information Sciences, vol. 328, pp. 199–258. Springer, London (2006) Chapter 6 CrossRefGoogle Scholar
  33. 33.
    Lyapunov, A.M.: Problème général de la stabilité du mouvement. Annals of Mathematics Studies, vol. 17. Princeton University Press, Princeton (1947) Google Scholar
  34. 34.
    Lyapunov, A.M.: The general problem of the stability of motion. In: Fuller, A.T. (ed.) The General Problem of the Stability of Motion. Taylor & Francis, London (1992) Google Scholar
  35. 35.
    Lyapunov, A.M. (Ляпунов, А.М.): A general task about the stability of motion (Общая задача об устойчивости движения). Kharkov Mathematical Society, University of Kharkov (1892) Google Scholar
  36. 36.
    Lyapunov, A.M. (Ляпунов, А.М.): A general task about the stability of motion (Общая задача об устойчивости движения). Государственное Издательство Технико-Теоретической Литературы, Moscow (1950) Google Scholar
  37. 37.
    Maxwell, J.C.: On governors. Proc. R. Soc. Lond. 16, 270–283 (1868) Google Scholar
  38. 38.
    Nowacki, H.: Leonhard Euler and the theory of ships. Max Planck Society—eDocument Server, http://edoc.mpg.de/ID:314833.0 (2007)
  39. 39.
    Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste, Tome I, II, III. Gautier-Villars, Paris (1892) (1893) (1899) Google Scholar
  40. 40.
    Poisson, S.D.: Mémoire sur les inégalités séculaires des moyens mouvements des planètes. Journal de l’École Polytechnique XV(1), 1–56 (1808) Google Scholar
  41. 41.
    Routh, E.J.: A Treatise on the Stability of a Given State of Motion. Macmillan, London (1877) Google Scholar
  42. 42.
    Stevin, S.: Wisconstighe Ghedachtenissen. Bouwensz, Leiden (1608). Digital Library of the Royal Netherlands Academy of Arts and Sciences (KNAW) Google Scholar
  43. 43.
    Stodola, A.: Über die Regulierung von Turbinen. Schweizerische Bauzeitung 22, 113–117 (1893) Google Scholar
  44. 44.
    Stodola, A.: Über die Regulierung von Turbinen. Schweizerische Bauzeitung 23, 108–112 (1894) Google Scholar
  45. 45.
    Suzuki, J.: A history of the stability problem in celestial mechanics, from Newton to Laplace (1687–1787). PhD thesis, Boston University (1996) Google Scholar
  46. 46.
    Torricelli, E.: Opera Geometrica. Florentiæ typis Amatoris Masse & Laurentij de Landis, Florence (1644). Max Planck Institute for the History of Science (digital library) Google Scholar
  47. 47.
    Vyshnegradsky, I.A. (Вышнеградский, И.А.): On controllers of direct action (О регуляторах прямого действия). Изв. Санкт-Петербургского технологического института, pp. 21–62 (1877) Google Scholar
  48. 48.
    Zhukovskii, N.E. (Жуковский, Н.Е.): On the stability of motion (О прочности движения). Ученые записки Московского университета, отдел физико-математический 4, 10–21 (1882) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Mechanical Systems, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland

Personalised recommendations