Nonlinear Dynamics

, 58:675 | Cite as

Control and synchronization for a class of new chaotic systems via linear feedback

  • Jianxiong Zhang
  • Wansheng Tang
Original Paper


This paper presents a class of new chaotic systems containing two system parameters and a nonlinear term. The complicated dynamics are studied by virtue of theoretical analysis, numerical simulation and spectrum of Lyapunov exponents. Based on Lyapunov stability criteria, the simple sufficient conditions for the design of appropriate linear state feedback controllers to stabilize and synchronize globally the new chaotic systems are presented.


Chaotic system Spectrum of Lyapunov exponents Synchronization Linear feedback 


  1. 1.
    Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20(1), 130–141 (1963) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Application. World Scientific, Singapore (1998) Google Scholar
  3. 3.
    Chan, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(7), 1465–1466 (1999) CrossRefGoogle Scholar
  4. 4.
    Lü, J., Chen, G.: A new chaotic attractor. Int. J. Bifurc. Chaos 12, 659–661 (2002) MATHCrossRefGoogle Scholar
  5. 5.
    Liu, C., Liu, T., Liu, L., Liu, K.: A new chaotic attractor. Chaos Solitons Fractals 22, 1031–1038 (2004) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Qi, G., Chen, G., Du, S., Chen, Z., Yuan, Z.: Analysis of a new chaotic system. Phys. A, Stat. Mech. Appl. 352, 295–308 (2005) CrossRefGoogle Scholar
  7. 7.
    Fradkov, A.L., Evans, R.J.: Control of chaos: Methods and applications in engineering. Annu. Rev. Control 29(1), 33–56 (2005) CrossRefGoogle Scholar
  8. 8.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hernandez-Tenorio, C., Belyaeva, T.L., Serkin, V.N.: Parametric resonance for solitons in the nonlinear Schrödinger equation model with time-dependent harmonic oscillator potential. Phys. B, Condens. Matter 398(2), 460–463 (2007) CrossRefGoogle Scholar
  11. 11.
    Yassen, M.T.: Chaos control of chaotic dynamical system using backstepping design. Chaos Solitons Fractals 27, 537–548 (2006) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lu, J.A., Han, X.P., Li, Y.T., Yu, M.H.: Adaptive coupled synchronization among multi-Lorenz systems family. Chaos Solitons Fractals 31, 866–878 (2007) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sun, H.J., Cao, H.J.: Chaos control and synchronization of a modified chaotic system. Chaos Solitons Fractals 37, 1442–1455 (2008) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    He, W., Cao, J.: Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters. Phys. Lett. A 372, 408–416 (2008) CrossRefGoogle Scholar
  15. 15.
    Niu, B., Wei, J.J.: Stability and bifurcation analysis in an amplitude equation with delayed feedback. Chaos Solitons Fractals 37, 1362–1371 (2008) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nazzal, J.M., Natsheh, A.N.: Chaos control using sliding-mode theory. Chaos Solitons Fractals 33, 695–702 (2007) CrossRefGoogle Scholar
  17. 17.
    Agiza, H.N., Yassen, M.T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control. Phys. Lett. A 278, 191–197 (2001) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Park, J.H.: Chaos synchronization of a chaotic system via nonlinear control. Chaos Solitons Fractals 25, 579–584 (2005) MATHCrossRefGoogle Scholar
  19. 19.
    Ucar, A., Lonngren, K.E., Bai, E.W.: Synchronization of the unified chaotic systems via active control. Chaos Solitons Fractals 27, 1292–1297 (2006) MATHCrossRefGoogle Scholar
  20. 20.
    Qiang, J.: Chaos control and synchronization of the Newton–Leipnik chaotic system. Chaos Solitons Fractals 35, 814–824 (2008) CrossRefGoogle Scholar
  21. 21.
    Mahmoud, G.M., Bountis, T., AbdEl-Latif, G.M., Mahmoud, E.E.: Chaos synchronization of two different chaotic complex Chen and Lü systems. Nonlinear Dyn. 55, 43–53 (2009) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Chen, S., Zhang, Q., Xie, J.: A stable-manifold based method for chaos control and synchronization. Chaos Solitons Fractals 20, 947–954 (2004) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Tanaka, K., Ikeda, T., Wang, H.O.: A unified approach to controlling chaos via LMI-based fuzzy control system design. IEEE Trans. Circuits Syst. I 45, 1021–1040 (1998) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Wang, Y.W., Guan, Z.H., Wang, H.O.: Impulsive synchronization for Takagi–Sugeno fuzzy model and its application to continuous chaotic system. Phys. Lett. A 339, 325–332 (2005) MATHCrossRefGoogle Scholar
  25. 25.
    Kenue, S.K.: Efficient activation functions for the back-propagation neural network. Proc. SPIE 1608, 450–459 (1992) CrossRefGoogle Scholar
  26. 26.
    Zhang, J.X., Tang, W.S., Xu, Y.: A new three-dimensional chaotic system. Acta Phys. Sin. 57(11), 6799–6807 (2008) (in Chinese) MathSciNetGoogle Scholar
  27. 27.
    Lü, J., Chen, G., Yu, X., Leung, H.: Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE Trans. Circuits Syst. I 51(12), 2476–2490 (2004) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Arneodo, A., Coullet, P., Tresser, C.: A possible new mechanism for the onset of turbulence. Phys. Lett. A 81, 197–201 (1981) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Genesio, R., Tesi, A.: A harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28, 531–548 (1992) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Systems EngineeringTianjin UniversityTianjinChina

Personalised recommendations