Nonlinear Dynamics

, 58:469 | Cite as

Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input

  • Xing Jian Jing
  • Zi Qiang Lang
Original Paper


The effects of cubic nonlinear damping on the system output spectrum are theoretically studied through a dimensionless mass–spring damping system model subject to a harmonic input, based on the Volterra series approximation. It is theoretically shown that the cubic nonlinear damping has little effect on the system output spectrum at high or low frequencies but drives the system output spectrum to be an alternative series at the natural frequency 1 such that the system output spectrum can be suppressed by the cubic damping.


Cubic nonlinear damping Output frequency response Alternative series 


  1. 1.
    Billings, S.A., Peyton-Jones, J.C.: Mapping nonlinear integro-differential equation into the frequency domain. Int. J. Control 54, 863–879 (1990) CrossRefGoogle Scholar
  2. 2.
    Boyd, S., Chua, L.O.: Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. CAS-32, 1150–1161 (1985) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Daley, S., Hatonen, J., Owens, D.H.: Active vibration isolation in a ‘smart spring’ mount using a repetitive control approach. Control Eng. Pract. 14, 991–997 (2006) CrossRefGoogle Scholar
  4. 4.
    Graham, D., Mcruer, D.: Analysis of Nonlinear Control Systems. Wiley, New York (1961) MATHGoogle Scholar
  5. 5.
    Hrovat, D.: Survey of advanced suspension developments and related optimal control applications. Automatica 33(10), 1781–1817 (1997) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Karnopp, D.: Active and semi-active vibration isolation. ASME J. Mech. Des. 117, 177–185 (1995) CrossRefGoogle Scholar
  7. 7.
    Lang, Z.Q., Billings, S.A.: Output frequency characteristics of nonlinear systems. Int. J. Control 64, 1049–1067 (1996) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lang, Z.Q., Billings, S.A., Yue, R., Li, J.: Output frequency response functions of nonlinear Volterra systems. Automatica 43, 805–816 (2007) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lee, R.C.H., Smith, M.C.: Nonlinear control for robust rejection of periodic disturbances. Syst. Control Lett. 39, 97–107 (2000) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mahony, R., Mareels, I., Bastin, G., Campion, G.: Output stabilization of square nonlinear systems. Automatica 33(8), 1571–1577(7) (1997) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nayfeh, S.A., Nayfeh, A.H.: Energy transfer from high- to low-frequency modes in flexible structure via modulation. J. Vib. Acoust. 116, 203–207 (1994) CrossRefGoogle Scholar
  12. 12.
    Nakhaie Jazar, G., Houim, R., Narimani, A., Golnaraghi, M.F.: Frequency response and jump avoidance in a nonlinear passive engine mount. J. Vib. Control 12(11), 1205–1237 (2006) CrossRefGoogle Scholar
  13. 13.
    Rugh, W.J.: Nonlinear System Theory—The Volterra/Wiener Approach. The Johns Hopkins University Press, Baltimore (1981) MATHGoogle Scholar
  14. 14.
    Jing, X.J., Lang, Z.Q., Billings, S.A.: Frequency domain analysis for suppression of output vibration from periodic disturbance using nonlinearities. J. Sound Vib. 314, 536–557 (2008) CrossRefGoogle Scholar
  15. 15.
    Jing, X.J., Lang, Z.Q., Billings, S.A., Tomlinson, G.R.: The parametric characteristics of frequency response functions for nonlinear systems. Int. J. Control 79(12), 1552–1564 (2006) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jing, X.J., Lang, Z.Q., Billings, S.A.: New bound characteristics of NARX model in the frequency domain. Int. J. Control 80(1), 140–149 (2007) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jing, X.J., Lang, Z.Q., Billings, S.A.: Frequency domain analysis for nonlinear Volterra systems with a general nonlinear output function. Int. J. Control 81(2), 235–251 (2008) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Bromwich, T.J.I’A., MacRobert, T.M.: Alternating series. In: An Introduction to the Theory of Infinite Series, 3rd edn., pp. 55–57. Chelsea, New York (1991). Chap. 19 Google Scholar
  19. 19.
    Hartley, T.T., Lorenzo, C.F.: A frequency-domain approach to optimal fractional-order damping. Nonlinear Dyn. 38, 69–84 (2004) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zhu, W.Q., Yang, Z.G., Song, T.T.: An optimal nonlinear feedback control strategy for randomly excited structural systems. Nonlinear Dyn. 24, 31–51 (2001) MATHCrossRefGoogle Scholar
  21. 21.
    Jing, X.J., Lang, Z.Q., Billings, S.A.: Output frequency response function based analysis for nonlinear Volterra systems. Mech. Syst. Signal Process. 22, 102–120 (2008) CrossRefGoogle Scholar
  22. 22.
    Solomou, M., Evans, C., Rees, D., Chiras, N.: Frequency domain analysis of nonlinear systems driven by multiharmonic signals. In: Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, Anchorage, AK, USA, vol. 1, pp. 799–804, 21–23 May 2002 Google Scholar
  23. 23.
    Nuij, P.W.J.M., Bosgra, O.H., Steinbuch, M.: Higher-order sinusoidal input describing functions for the analysis of non-linear systems with harmonic responses. Mech. Syst. Signal Process. 20, 1883–1904 (2006) CrossRefGoogle Scholar
  24. 24.
    Hasegawa, A., End, T.: Averaging method via all numerical computation applied to weakly-nonlinear coupled oscillator systems. In: IEEE International Symposium on Circuits and Systems, V-117-120, 28–31 May 2000. Geneva, Switzerland (2000) Google Scholar
  25. 25.
    Sauders, J.A., Verhult, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (1985) Google Scholar
  26. 26.
    Murdock, T.A.: Perturbation Theory and Methods. Wiley, New York (1991) Google Scholar
  27. 27.
    Morrison, T.M., Rand, R.H.: Resonance in the delayed nonlinear Mathieu equation. Nonlinear Dyn. 50, 341–352 (2007) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Sound and Vibration ResearchUniversity of SouthamptonSouthamptonUK
  2. 2.Department of Automatic Control and Systems EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations