Nonlinear Dynamics

, 58:453 | Cite as

Higher-codimension bifurcations caused by delay

  • Mingshu Peng
  • Rong Yuan
Original Paper


In this paper, we give a detailed study of rich dynamics in two-parameter families of two-dimensional generalized delayed discrete Cournot duopoly models. Multistability, such as the coexistence of period-2/quasiperiodic (limit-cycle), chaotic/regular motions or synchronized/asynchronized solutions are discussed. Complexity caused by delay, including the change of local stability regions and the occurrence of higher-codimension bifurcations, is to be discovered.


Nonlinear duopoly economic model Higher-codimension bifurcation Chaos 2 symmetry Delay 


  1. 1.
    Guo, S., Tang, X., Huang, L.: Bifurcation analysis in a discrete-time single-directional network with delays. Neurocomputing 71(79), 1422–1435 (2008) CrossRefGoogle Scholar
  2. 2.
    Guo, S., Tang, X., Huang, L.: Stability and bifurcation in a discrete system of two neurons with delays. Nonlinear Anal., Real World Appl. 9(4), 1323–1335 (2008) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. London Mathematical Society Lecture Note Series, vol. 41. Cambridge University Press, Cambridge (1981) MATHGoogle Scholar
  4. 4.
    Kuruklis, S.A.: The asymptotic stability of x n+1ax n+bx nk=0. J. Math. Anal. Appl. 188, 719–731 (1994) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1995) MATHGoogle Scholar
  6. 6.
    Marotto, F.R.: Snap-back repellers imply chaos in ℝn. J. Math. Anal. Appl. 63, 199–223 (1978) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Peng, M., Huang, L., Wang, G.: Higher-codimension bifurcations in a discrete unidirectional neural network model with delayed feedback. Chaos 18, 023105 (2008) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Peng, M., Jiang, Z., Jiang, X., Hu, J., Qu, Y.: Multistability and complex dynamics in a simple discrete economic model. Chaos Solitons Fractals (2009, in press) Google Scholar
  9. 9.
    Wang, G., Peng, M.: Rich oscillation patterns in a simple delayed neuron network and its linear control. Int. J. Bifurc. Chaos Appl. Sci. Eng. (2009, in press) Google Scholar
  10. 10.
    Peng, M., Yuan, Y.: Synchronization and desynchronization in a delayed discrete neural network. Int. J. Bifurc. Chaos Appl. Sci. Eng. 17(3), 781–803 (2007) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Wu, J., Zhang, R.: A simple delayed network with large capacity for associate memory. Discrete Control Dyn. Syst. B 4, 853–865 (2004) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of MathematicsBeijing Jiao Tong UniversityBeijingChina
  2. 2.School of Mathematical SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations