Nonlinear Dynamics

, Volume 58, Issue 1–2, pp 63–73 | Cite as

Nonlinear stability analysis of a disk brake model

  • Daniel Hochlenert
Original Paper


It has become commonly accepted by scientists and engineers that brake squeal is generated by friction-induced self-excited vibrations of the brake system. The noise-free configuration of the brake system loses stability through a flutter-type instability and the system starts oscillating in a limit cycle. Usually, the stability analysis of disk brake models, both analytical as well as finite element based, investigates the linearized models, i.e. the eigenvalues of the linearized equations of motion. However, there are experimentally observed effects not covered by these analyses, even though the full nonlinear models include these effects in principle.

The present paper describes the nonlinear stability analysis of a realistic disk brake model with 12 degrees of freedom. Using center manifold theory and artificially increasing the degree of degeneracy of the occurring bifurcation, an analytical expression for the turning points in the bifurcation diagram of the subcritical Hopf bifurcations is calculated. The parameter combination corresponding to the turning points is considered as the practical stability boundary of the system. Basic phenomena known from the operating experience of brake systems tending to squeal problems can be explained on the basis of the practical stability boundary.


Friction Self-excited vibrations Brake squeal Nonlinear stability analysis Center manifold Hopf bifurcation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ibrahim, R.: Friction-induced vibration, chatter, squeal and chaos, part I: Mechanics of contact and friction. Appl. Mech. Rev. 47(7), 209–226 (1994) CrossRefGoogle Scholar
  2. 2.
    Ibrahim, R.: Friction-induced vibration, chatter, squeal and chaos, part II: Dynamic and modeling. Appl. Mech. Rev. 47(7), 227–253 (1994) CrossRefGoogle Scholar
  3. 3.
    Chen, F., Tan, C.A., Quaglia, R.L.: Disc Brake Squeal: Mechanism, Analysis, Evaluation and Reduction/Prevention. SAE International, Warrendale (2006) Google Scholar
  4. 4.
    Ouyang, H., Mottershead, J., Cartmell, M., Friswell, M.: Friction-induced parametric resonances in discs: effect of a negative friction–velocity relationship. J. Sound Vib. 209(2), 251–264 (1998) CrossRefGoogle Scholar
  5. 5.
    Shin, K., Brennan, M., Oh, J.E., Harris, C.: Analysis of disk brake noise using a two-degree-of-freedom model. J. Sound Vib. 254(5), 837–848 (2002) CrossRefGoogle Scholar
  6. 6.
    Millner, N.: An analysis of disc brake squeal. SAE Technical Paper Series, 780332 (1978) Google Scholar
  7. 7.
    Popp, K., Rudolph, M., Kröger, M., Lindner, M.: Mechanisms to generate and avoid friction-induced vibrations. VDI-Bericht 1736, 1–15 (2002) Google Scholar
  8. 8.
    von Wagner, U., Hochlenert, D., Hagedorn, P.: Minimal models for disk brake squeal. J. Sound Vib. 302, 527–539 (2007) CrossRefGoogle Scholar
  9. 9.
    Hochlenert, D., Spelsberg-Korspeter, G., Hagedorn, P.: Friction-induced vibrations in moving continua and their application to brake squeal. ASME J. Appl. Mech. 74, 542–549 (2007) MATHCrossRefGoogle Scholar
  10. 10.
    Jearsiripongkul, T.: Squeal in floating caliper disk brakes: A mathematical model. Ph.D. thesis, Technische Universität Darmstadt (2005) Google Scholar
  11. 11.
    Spelsberg-Korspeter, G., Hochlenert, D., Kirillov, O.N., Hagedorn, P.: In- and out-of-plane vibrations of a rotating plate with frictional contact: investigations on squeal phenomena. ASME J. Appl. Mech. (2007, accepted for publication) Google Scholar
  12. 12.
    Giannini, O., Akay, A., Massi, F.: Experimental analysis of brake squeal noise on a laboratory brake setup. J. Sound Vib. 292, 1–20 (2006) CrossRefGoogle Scholar
  13. 13.
    Sinou, J., Thouverez, F., Jezequel, L.: Analysis of friction and instability by the centre manifold theory for a non-linear sprag–slip model. J. Sound Vib. 265(3), 527–559 (2003) CrossRefGoogle Scholar
  14. 14.
    Hochlenert, D.: Selbsterregte Schwingungen in Scheibenbremsen: Mathematische Modellbildung und aktive Unterdrückung von Bremsenquietschen. Ph.D. thesis, Technische Universität Darmstadt (2006) Google Scholar
  15. 15.
    Troger, H., Steindl, H.: Nonlinear Stability and Bifurcation Theory. Springer, Wien (1991) MATHGoogle Scholar
  16. 16.
    Xu, G., Troger, H., Steindl, A.: Global analysis of the loss of stability of a special railway bogie. In: Schiehlen, W. (ed.) Nonlinear Dynamics in Engineering Systems. Springer, Berlin (1990) Google Scholar
  17. 17.
    Rand, R., Armbruster, D.: Perturbation Methods, Bifurcation Theory and Computer Algebra. Springer, New York (1988) Google Scholar
  18. 18.
    Golubitsky, M., Schaeffer, D.: Singularities and Groups in Bifurcation Theory. Springer, New York (1985) MATHGoogle Scholar
  19. 19.
    Seyranian, A.P., Mailybaev, A.A.: Multiparameter Stability Theory with Mechanical Applications. World Scientific, Singapore (2003) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Dynamics and Vibrations GroupTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations