Nonlinear Dynamics

, Volume 57, Issue 3, pp 431–439 | Cite as

Adaptive robust fuzzy control for a class of uncertain chaotic systems

Original Paper


In this paper, the output feedback control of uncertain chaotic systems is addressed via an adaptive robust fuzzy approach. Fuzzy logic systems are employed to approximate uncertain nonlinear functions in the chaotic systems. Because only partial information of the system’s states is needed to be known, an observer is given to estimate the unmeasured states. Compared with the existing results in the observer design, the prior knowledge on dynamic uncertainties is relaxed and a class of more general chaotic systems is considered as well as robustness to the approximation error is improved. It can be proven that the closed-loop system is stable in the sense that all the variables are bounded. Simulation example for the unified chaotic systems is given to verify the effectiveness of the proposed method.


Uncertain chaotic systems Adaptive control Fuzzy control Output feedback control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, G.R.: Controlling Chaos and Bifurcations in Engineering Systems. CRC Press, Boca Raton (1999) Google Scholar
  2. 2.
    Ge, S.S., Wang, C.: Adaptive control of uncertain Chua’s circuits. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(9), 1397–1402 (2000) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ge, S.S., Wang, C.: Uncertain chaotic system control via adaptive neural design. Int. J. Bifurc. Chaos 12(5), 1097–1109 (2002) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Wang, C., Ge, S.S.: Adaptive backstepping control of uncertain Lorenz system. Int. J. Bifurc. Chaos 11(4), 1115–1119 (2001) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jiang, Z.P.: Advanced feedback control of the chaotic Duffing equation. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(2), 244–249 (2002) CrossRefGoogle Scholar
  6. 6.
    Hua, C.C., Guan, X.P.: Adaptive control for chaotic systems. Chaos Solitons Fractals 22(1), 55–60 (2004) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hua, C.C., Guan, X.P., Shi, P.: Adaptive feedback control for a class of chaotic systems. Chaos Solitons Fractals 23(3), 757–765 (2005) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, B., Liu, X.P., Tong, S.C.: Adaptive fuzzy approach to control unified chaotic systems. Chaos Solitons Fractals 34(4), 1180–1187 (2007) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hua, C.C., Guan, X.P., Li, X.L., Shi, P.: Adaptive observer-based control for a class of chaotic systems. Chaos Solitons Fractals 22(1), 103–110 (2004) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tong, S.C., Li, H.X.: Direct adaptive fuzzy output tracking control of nonlinear systems. Fuzzy Sets Syst. 128, 107–115 (2002) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Tong, S.C., Li, H.X., Wang, W.: Observer-based adaptive fuzzy control for SISO nonlinear systems. Fuzzy Sets Syst. 148(3), 355–376 (2004) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Wang, C.H., Lin, T.C., Lee, T.T., Liu, H.L.: Adaptive hybrid intelligent control for uncertain nonlinear dynamical systems. IEEE Trans. Syst. Man Cybern. Part B 32, 583–597 (2002) CrossRefGoogle Scholar
  13. 13.
    Kung, C.C., Chen, T.H.: Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems. Fuzzy Sets Syst. 155(2), 292–308 (2005) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Wang, J., Qiao, G.D., Deng, B.: Observer-based robust adaptive variable universe fuzzy control for chaotic system. Chaos Solitons Fractals 23(3), 1013–1032 (2005) MATHMathSciNetGoogle Scholar
  15. 15.
    Boulkroune, A., Tadjine, M., M’Saad, M., Farza, M.: How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems. Fuzzy Sets Syst. 159(8), 926–948 (2008) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Wang, L.X.: Fuzzy systems are universal approximators. In: IEEE International Conference on Fuzzy Systems, San Diego, pp. 1163–1170 (1992) Google Scholar
  17. 17.
    Li, T.S., Yang, Y.S., Hu, J.Q., Yang, L.J.: Robust adaptive fuzzy tracking control for a class of perturbed uncertain nonlinear systems with UVCGF. Int. J. Wavelets Multiresolut. Inf. Process. 5(1), 227–239 (2007) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Li, T.S., Hong, B.G., Shi, G.Y.: DSC-backstepping based robust adaptive NN control for strict-feedback nonlinear systems via small gain theorem. Int. J. Syst. Control Commun. 1(1), 124–145 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsLiaoning University of TechnologyJinzhouChina

Personalised recommendations