Nonlinear Dynamics

, Volume 57, Issue 3, pp 411–423 | Cite as

Dynamic controller design for a class of nonlinear uncertain systems subjected to time-varying disturbance

Original Paper


Inheriting advantages of both proportional-integral-derivative controller and standard sliding mode control theory, a synthetic controller design for a class of nonlinear system is presented. Regarding the architecture of the developed controller, it does not include model-based nominal control term so that the method eliminates complicated processes for system parameters identification and design of extra compensators. With simple gain tuning rules, the proposed control algorithm provides global asymptotical stability and is capable of alleviating discontinuous control switching considerably. A self-sustained oscillations phenomenon caused by the proposed control configuration is also further addressed. Simulations and experiments are conducted to verify the feasibility and applicability of the proposed approach.


PID controller Nonlinear control Sliding mode control Chattering Disturbance rejection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Soylemez, M.T., Munro, N., Baki, H.: Fast calculation of stabilizing PID controllers. Automatica 39(1), 121–126 (2003) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alvarez-Ramirez, J., Cervantes, I., Kelly, R.: PID regulation of robot manipulators: stability and performance. Syst. Control Lett. 41(2), 73–83 (2000) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen, W.H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000) CrossRefGoogle Scholar
  4. 4.
    Liu, Z.L., Svoboda, J.: A new control scheme for nonlinear systems with disturbances. IEEE Trans. Control Syst. Technol. 14(1), 176–181 (2006) CrossRefGoogle Scholar
  5. 5.
    Ding, Z.: Asymptotic rejection of asymmetric periodic disturbances in output-feedback nonlinear systems. Automatica 43(3), 555–561 (2007) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ding, Z.: Asymptotic rejection of unmatched general periodic disturbances in a class of nonlinear systems. IEE Proc. Control Theory Appl. 2(4), 269–276 (2008) CrossRefGoogle Scholar
  7. 7.
    Ding, Z.: Asymptotic rejection of finite frequency modes of general periodic disturbances in output feedback nonlinear systems. Automatica 44(9), 2317–2325 (2008) MATHCrossRefGoogle Scholar
  8. 8.
    Jafarov, E.M., Parlakci, M.N.A., Istefanopulos, Y.: A new variable structure PID-controller design for robot manipulators. IEEE Trans. Control Syst. Technol. 13(1), 122–130 (2005) CrossRefGoogle Scholar
  9. 9.
    Huang, Y.J., Wang, J.Y.: Steady-state analysis for a class of sliding mode controlled systems using describing function method. Nonlinear Dyn. 30(3), 223–241 (2002) MATHCrossRefGoogle Scholar
  10. 10.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, New Jersey (1991) MATHGoogle Scholar
  11. 11.
    Chen, M.S., Hwang, Y.R., Tomizuka, M.: A state-dependent boundary layer design for sliding mode control. IEEE Trans. Autom. Control 47(10), 1677–1681 (2002) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Sira-Ramirez, H.: On the dynamical sliding mode control of nonlinear systems. Int. J. Control 57(5), 1039–1061 (1993) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bartolini, G., Ferrara, A., Usai, E.: Chattering avoidance by second-order sliding mode control. IEEE Trans. Autom. Control 43(2), 241–246 (1998) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kachroo, P.: Existence of solution to a class of nonlinear convergent chattering free SMC systems. IEEE Trans. Autom. Control 44(8), 1620–1624 (1999) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chen, C.L., Xu, R.L.: Tracking control of robot manipulator using sliding mode controller with performance robustness. ASME J. Dyn. Syst. Meas. Control 121(1), 64–70 (1999) CrossRefGoogle Scholar
  16. 16.
    Peng, C.C., Chen, C.L.: Biaxial contouring control with friction dynamics using a contour index approach. Int. J. Mach. Tools Manuf. 47(10), 1542–1555 (2007) CrossRefGoogle Scholar
  17. 17.
    Suzuki, S., Pan, Y.D., Furuta, K.: Walking control by chattering-free VS servo using passive walking trajectory. Int. J. Control 76(9–10), 1034–1046 (2003) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Chen, M.S., Chen, C.H., Yang, F.Y.: An LTR-observer-based dynamic sliding mode control for chattering reduction. Automatica 43(6), 1111–1116 (2007) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Parra-Vega, V., Hirzinger, G.: Chattering-free sliding mode control for a class of nonlinear mechanical systems. Int. J. Robust Nonlinear Control 11(12), 1161–1178 (2001) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Parra-Vega, V., Arimoto, S., Liu, Y.H., Hirzinger, G., Akella, P.: Dynamic sliding PID control for tracking of robot manipulators: theory and experiments. IEEE Trans. Robot. Autom. 19(6), 967–976 (2003) CrossRefGoogle Scholar
  21. 21.
    Arteaga, M.A., Castillo-Sanchez, A., Parra-Vega, V.: Cartesian control of robots without dynamic model and observer design. Automatica 42(3), 473–480 (2006) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Zanasi, R.: Sliding mode using discontinuous control algorithm of integral type. Int. J. Control 57(5), 1079–1099 (1993) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Emelyanov, S.V., Korovin, S.K.: Control of Complex and Uncertain Systems: New Types of Feedback. Springer, London (2000) Google Scholar
  24. 24.
    Xian, B., Dawson, D.M., de Queiroz, M.S., Chen, J.: A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Trans. Autom. Control 49(7), 1206–1211 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Aeronautics and AstronauticsNational Cheng Kung University TainanTainanTaiwan

Personalised recommendations