Nonlinear Dynamics

, Volume 57, Issue 1–2, pp 253–260 | Cite as

Calculation of fractional derivatives of noisy data with genetic algorithms

Original Paper


This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.


Fractional derivatives Fractional calculus Genetic algorithms Numerical differentiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, San Diego (1974) Google Scholar
  2. 2.
    Ross, B.: Fractional calculus. Math. Mag. 50, 15–122 (1977) CrossRefGoogle Scholar
  3. 3.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993) MATHGoogle Scholar
  4. 4.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) MATHGoogle Scholar
  5. 5.
    Bagley, R.L., Torvik, P.J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21, 741–748 (1983) MATHCrossRefGoogle Scholar
  6. 6.
    Oustaloup, A.: La commande CRONE: Commande Robuste d’Ordre Non Entier. Hermes (1991) Google Scholar
  7. 7.
    Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Machado, J.T.: Analysis and design of fractional-order digital control systems. J. Syst. Anal. Model. Simul. 27, 107–122 (1997) MATHGoogle Scholar
  9. 9.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) MATHGoogle Scholar
  10. 10.
    Machado, J.T.: Discrete-time fractional-order controllers. J. Fract. Calc. Appl. Anal. 4, 47–66 (2001) MATHGoogle Scholar
  11. 11.
    Nigmatullin, R.R.: A fractional integral and its physical interpretation. Theor. Math. Phys. 90, 242–251 (1992) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Rutman, R.S.: On the paper by R.R. Nigmatullin “A fractional integral and its physical interpretation”. Theor. Math. Phys. 100, 1154–1156 (1994) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Tatom, F.B.: The relationship between fractional calculus and fractals. Fractals 3, 217–229 (1995) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yu, Z., Ren, F., Zhou, J.: Fractional integral associated to generalized cookie-cutter set and its physical interpretation. J. Phys. A: Math. Gen. 30, 5569–5577 (1997) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Adda, F.B.: Geometric interpretation of the fractional derivative. J. Fract. Calc. 11, 21–52 (1997) MATHMathSciNetGoogle Scholar
  16. 16.
    Moshrefi-Torbati, M., Hammond, J.K.: Physical and geometrical interpretation of fractional operators. J. Franklin Inst. B 335, 1077–1086 (1998) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Podlubny, I.: Geometrical and physical interpretation of fractional integration and fractional differentiation. J. Fract. Calc. Appl. Anal. 5, 357–366 (2002) MathSciNetGoogle Scholar
  18. 18.
    Machado, J.T.: A probabilistic interpretation of the fractional-order differentiation. J. Fract. Calc. Appl. Anal. 6, 73–80 (2003) MATHMathSciNetGoogle Scholar
  19. 19.
    Stanislavsky, A.A.: Probabilistic interpretation of the integral of fractional order. Theor. Math. Phys. 138, 418–431 (2004) CrossRefMATHGoogle Scholar
  20. 20.
    Li, J.: General explicit difference formulas for numerical differentiation. J. Comput. Appl. Math. 183, 29–52 (2005) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Knowles, I., Wallace, R.: A variational method for numerical differentiation. Numer. Math. 70, 91–110 (1995) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Chartrand, R.: Numerical differentiation of noisy, non-smooth data. Los Alamos National Laboratory, December 13 (2005) Google Scholar
  23. 23.
    Ahnert, K., Abel, M.: Numerical differentiation: local versus global methods. Comput. Phys. (2006) Google Scholar
  24. 24.
    Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27, 257–263 (2007) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975) Google Scholar
  26. 26.
    Goldenberg, D.E.: Genetic Algorithms in Search Optimization, and Machine Learning. Addison–Wesley, Reading (1989) Google Scholar
  27. 27.
    Machado, J.T., Galhano, A.: Numerical calculation of fractional derivatives of non-smooth data. In: ENOC 2008—6th EUROMECH Conference, Saint Petersburg, Russia (2008) Google Scholar
  28. 28.
    Hanke, M., Scherzer, O.: Inverse problems light: numerical differentiation. Am. Math. Mon. 108, 512–521 (2001) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Wang, J.: Wavelet approach to numerical differentiation of noisy functions. Commun. Pure Appl. Anal. 6, 873–897 (2007) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Electrical EngineeringInstitute of Engineering of PortoPortoPortugal

Personalised recommendations