Skip to main content

Advertisement

Log in

Calculation of fractional derivatives of noisy data with genetic algorithms

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, San Diego (1974)

    Google Scholar 

  2. Ross, B.: Fractional calculus. Math. Mag. 50, 15–122 (1977)

    Article  Google Scholar 

  3. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  4. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  5. Bagley, R.L., Torvik, P.J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21, 741–748 (1983)

    Article  MATH  Google Scholar 

  6. Oustaloup, A.: La commande CRONE: Commande Robuste d’Ordre Non Entier. Hermes (1991)

  7. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Machado, J.T.: Analysis and design of fractional-order digital control systems. J. Syst. Anal. Model. Simul. 27, 107–122 (1997)

    MATH  Google Scholar 

  9. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  10. Machado, J.T.: Discrete-time fractional-order controllers. J. Fract. Calc. Appl. Anal. 4, 47–66 (2001)

    MATH  Google Scholar 

  11. Nigmatullin, R.R.: A fractional integral and its physical interpretation. Theor. Math. Phys. 90, 242–251 (1992)

    Article  MathSciNet  Google Scholar 

  12. Rutman, R.S.: On the paper by R.R. Nigmatullin “A fractional integral and its physical interpretation”. Theor. Math. Phys. 100, 1154–1156 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Tatom, F.B.: The relationship between fractional calculus and fractals. Fractals 3, 217–229 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yu, Z., Ren, F., Zhou, J.: Fractional integral associated to generalized cookie-cutter set and its physical interpretation. J. Phys. A: Math. Gen. 30, 5569–5577 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Adda, F.B.: Geometric interpretation of the fractional derivative. J. Fract. Calc. 11, 21–52 (1997)

    MATH  MathSciNet  Google Scholar 

  16. Moshrefi-Torbati, M., Hammond, J.K.: Physical and geometrical interpretation of fractional operators. J. Franklin Inst. B 335, 1077–1086 (1998)

    Article  MathSciNet  Google Scholar 

  17. Podlubny, I.: Geometrical and physical interpretation of fractional integration and fractional differentiation. J. Fract. Calc. Appl. Anal. 5, 357–366 (2002)

    MathSciNet  Google Scholar 

  18. Machado, J.T.: A probabilistic interpretation of the fractional-order differentiation. J. Fract. Calc. Appl. Anal. 6, 73–80 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Stanislavsky, A.A.: Probabilistic interpretation of the integral of fractional order. Theor. Math. Phys. 138, 418–431 (2004)

    Article  MATH  Google Scholar 

  20. Li, J.: General explicit difference formulas for numerical differentiation. J. Comput. Appl. Math. 183, 29–52 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Knowles, I., Wallace, R.: A variational method for numerical differentiation. Numer. Math. 70, 91–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chartrand, R.: Numerical differentiation of noisy, non-smooth data. Los Alamos National Laboratory, December 13 (2005)

  23. Ahnert, K., Abel, M.: Numerical differentiation: local versus global methods. Comput. Phys. (2006)

  24. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27, 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  25. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  26. Goldenberg, D.E.: Genetic Algorithms in Search Optimization, and Machine Learning. Addison–Wesley, Reading (1989)

    Google Scholar 

  27. Machado, J.T., Galhano, A.: Numerical calculation of fractional derivatives of non-smooth data. In: ENOC 2008—6th EUROMECH Conference, Saint Petersburg, Russia (2008)

  28. Hanke, M., Scherzer, O.: Inverse problems light: numerical differentiation. Am. Math. Mon. 108, 512–521 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, J.: Wavelet approach to numerical differentiation of noisy functions. Commun. Pure Appl. Anal. 6, 873–897 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Tenreiro Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, J.A.T. Calculation of fractional derivatives of noisy data with genetic algorithms. Nonlinear Dyn 57, 253–260 (2009). https://doi.org/10.1007/s11071-008-9436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9436-1

Keywords

Navigation