Nonlinear Dynamics

, Volume 57, Issue 1–2, pp 57–67 | Cite as

On energy transfer between vibrating systems under linear and nonlinear interactions

  • S. N. J. Costa
  • C. H. G. Hassmann
  • J. M. Balthazar
  • M. J. H. Dantas
Original Paper


The present study deals with energy transfer in a dissipative mechanical system. Numerical results are given by considering two different potentials and periodical excitation. Specifically, we show energy transfer from linear oscillator to another one, depending on initial conditions. Also, energy transfer from linear to nonlinear (energy pumping), as well as from nonlinear to linear, oscillator is analyzed, under linear and nonlinear interactions.


Cubic and linear interaction Energy transfer Energy pumping Essential stiffness nonlinearity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gourdon, E., Lamarque, C.H.: Energy pumping with various nonlinear structures: Numerical evidences. Nonlinear Dyn. 40, 281–307 (2005) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Gourdon, E., Lamarque, C.H.: Energy pumping for a larger span of energy. J. Sound Vib. 285, 711–720 (2005) CrossRefGoogle Scholar
  3. 3.
    Gendelman, O., Manevitch, L.I., Vakakis, A.F., Closkey, R.M.: Energy pumping in nonlinear mechanical oscillators: Part I—Dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68, 34–41 (2001) MATHCrossRefGoogle Scholar
  4. 4.
    Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: Part II-Resonance capture. J. Appl. Mech. 68, 42–48 (2001) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gourdon, E., Lamarque, C.H., Pernot, S.: Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment. Nonlinear Dyn. 50(4), 793–808 (2007) CrossRefGoogle Scholar
  6. 6.
    Kerschen, G., Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Irreversible passive energy transfer in coupled oscillators with essential nonlinearity. SIAM J. Appl. Math. 66(2), 648–679 (2006) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50, 651–677 (2007) CrossRefGoogle Scholar
  8. 8.
    Felix, J.L.P., Balthazar, J.M., Dantas, M.J.H.: On energy pumping, synchronization and beat phenomenon in a non-ideal structure coupled to an essentially nonlinear oscillator. Nonlinear Dyn. (2008) doi:  10.1007/s11071-008-9374-y Google Scholar
  9. 9.
    Tsakirtzisa, S., Kerschenb, G., Panagopoulosa, P.N., Vakakis, A.F.: Multi-frequency nonlinear energy transfer from linear oscillators to MDOF essentially nonlinear attachments. J. Sound Vib. 285, 483–490 (2005) CrossRefGoogle Scholar
  10. 10.
    Gendelman, O.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001) MATHCrossRefGoogle Scholar
  11. 11.
    Vakakis, A.F.: Inducing passive nonlinear energy sinks in linear vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001) CrossRefGoogle Scholar
  12. 12.
    Vakakis, A.F.: Designing a linear structure with a local nonlinear attachment for enhanced energy pumping. Meccanica 38, 677–686 (2003) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Vakakis, A.F., Manevitch, L.I., Gendelman, O., Bergman, L.: Dynamics of linear discrete systems connected to local essentially nonlinear attachments. J. Sound Vib. 264, 559–577 (2003) CrossRefGoogle Scholar
  14. 14.
    Jiang, X., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn. 33, 87–102 (2003) MATHCrossRefGoogle Scholar
  15. 15.
    Musienko, A.I., Lamarque, C.H., Manevitch, L.I.: Design of mechanical energy pumping devices. J. Vib. Control 12, 355–371 (2006) CrossRefGoogle Scholar
  16. 16.
    Dantas, M.J., Balthazar, J.M.: On energy transfer between linear and non-linear oscillators. J. Sound Vib. 315(4–5), 1047–1070 (2008) CrossRefGoogle Scholar
  17. 17.
    Dantas, M.J., Balthazar, J.M.: Energy transfer between linear oscillators under non-linear interactions. In: VII Encontro Regional de Matemática Aplicada e Computacional, ERMAC, Uberlândia (2007) Google Scholar
  18. 18.
    Dantas, M.J., Balthazar, J.M.: On theoretical results on energy transfer on linear and nonlinear mechanical oscillators. In: EUROMECH Colloquium 483, Geometrically Non-linear Vibrations of Structures, Porto, Portugal (2007) Google Scholar
  19. 19.
    Rosenberg, R.M.: The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech. 29, 7–14 (1962) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. N. J. Costa
    • 1
  • C. H. G. Hassmann
    • 2
  • J. M. Balthazar
    • 1
  • M. J. H. Dantas
    • 3
  1. 1.Instituto de Geociências e Ciências Exatas, Departamento de Estatística, Matemática Aplicada e ComputaçãoUNESPRio ClaroBrazil
  2. 2.Departamento de Mecânica Espacial e ControleINPESão José dos CamposBrazil
  3. 3.Faculdade de MatemáticaUFUUberlândiaBrazil

Personalised recommendations