Nonlinear Dynamics

, Volume 56, Issue 1–2, pp 69–83 | Cite as

A differential quadrature algorithm for nonlinear Schrödinger equation

  • Alper Korkmaz
  • İdris Dağ
Original Paper


Numerical solutions of a nonlinear Schrödinger equation is obtained using the differential quadrature method based on polynomials for space discretization and Runge–Kutta of order four for time discretization. Five well-known test problems are studied to test the efficiency of the method. For the first two test problems, namely motion of single soliton and interaction of two solitons, numerical results are compared with earlier works. It is shown that results of other test problems agrees the theoretical results. The lowest two conserved quantities and their relative changes are computed for all test examples. In all cases, the differential quadrature Runge–Kutta combination generates numerical results with high accuracy.


Differential quadrature Interaction of solitons Lagrange interpolation polynomials Nonlinear Schrödinger equation Solitary waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karpman, V.I., Krushkal, E.M.: Modulated waves in non-linear dispersive media. Sov. Phys. JETP 28, 277 (1969) Google Scholar
  2. 2.
    Scott, A.C., Chu, F.Y.F., Mclaughlin, D.W.: The soliton: a new concept in applied science. Proc. IEEE 61, 1443 (1973) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Zakharov, V.E., Shabat, A.B.: Exact theory of two dimensional self focusing and one dimensional self waves in non-linear media. Sov. Phys. JETP 34, 62 (1972) MathSciNetGoogle Scholar
  4. 4.
    Delfour, M., Fortin, M., Payne, G.: Finite-difference solutions of a non-linear Schrodinger equation. J. Comput. Phys. 44, 277–288 (1981) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution equations, II: numerical, nonlinear Schrodinger equations. J. Comput. Phys. 55, 203–230 (1984) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Argyris, J., Haase, M.: An engineer’s guide to soliton phenomena: application of the finite element method. Comput. Methods Appl. Mech. Eng. 61, 71–122 (1987) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Twizell, E.H., Bratsos, A.G., Newby, J.C.: A finite-difference method for solving the cubic Schrodinger equation. Math. Comput. Simul. 43, 67–75 (1997) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dağ, İ., A quartic B-spline finite element method for solving nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 174, 247–258 (1999) MATHCrossRefGoogle Scholar
  9. 9.
    Chen, H., Shizgal, B.D.: The quadrature discretization method in the solution of the Schrödinger equation. J. Chem. 24(4), 321–343 (1998) MATHMathSciNetGoogle Scholar
  10. 10.
    Shizgal, B.D., Chen, H.: The quadrature discretization method in the solution of the Schrödinger equation with nonclassical basis functions. J. Chem. Phys. 104(11), 4137–4150 (1996) CrossRefGoogle Scholar
  11. 11.
    Leung, K., Shizgal, B.D., Chen, H.: The quadrature discretization method in comparison with other numerical methods of solution of the Fokker–Planck for electron thermalization. J. Math. Chem. 24(4), 291–319 (1998) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lo, J., Shizgal, B.D.: Spectral convergence of the quadrature discretization method in the solution of the Schrödinger and Fokker–Planck equations: comparison with Sinc methods. J. Chem. Phys. 125(19), 194108 (2006) CrossRefGoogle Scholar
  13. 13.
    Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear differential equations. J. Comput. Phys. 10, 40–52 (1972) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Quan, J.R., Chang, C.T.: New sightings in involving distributed system equations by the quadrature methods, I. Comput. Chem. Eng. 13, 779–788 (1989) CrossRefGoogle Scholar
  15. 15.
    Quan, J.R., Chang, C.T.: New sightings in involving distributed system equations by the quadrature methods, II. Comput. Chem. Eng. 13, 71017–71024 (1989) Google Scholar
  16. 16.
    Bellman, R., Kashef, B., Lee, E.S., Vasudevan, R.: Differential quadrature and splines. In: Computers and Mathematics with Applications, pp. 371–376. Pergamon, Oxford (1976) Google Scholar
  17. 17.
    Shu, C., Richards, B.E.: Application of generalized differential quadrature to solve two dimensional incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 15, 791–798 (1992) MATHCrossRefGoogle Scholar
  18. 18.
    Shu, C., Wu, Y.L.: Integrated radial basis functions-based differential quadrature method and its performance. Int. J. Numer. Methods Fluids 53, 969–984 (2007) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Shu, C., Xue, H.: Explicit computation of weighting coefficients in the harmonic differential quadrature. J. Sound Vib. 204(3), 549–555 (1997) CrossRefGoogle Scholar
  20. 20.
    Striz, A.G., Wang, X., Bert, C.W.: Harmonic differential quadrature method and applications to analysis of structural components. Acta Mech. 111, 85–94 (1995) MATHCrossRefGoogle Scholar
  21. 21.
    Civalek, Ö.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. Int. J. 26(2), 171–186 (2004) CrossRefGoogle Scholar
  22. 22.
    Civalek, Ö: Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation. J. Sound Vib. 294, 966–980 (2006) CrossRefGoogle Scholar
  23. 23.
    Malekzadeh, P., Karami, G.: Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates. Eng. Struct. 27, 1563–1574 (2005) CrossRefGoogle Scholar
  24. 24.
    Zhu, Y.D., Shu, C., Qiu, J., Tani, J.: Numerical simulation of natural convection between two elliptical cylinders using DQ method. Int. J. Heat Mass Transf. 47, 797–808 (2004) MATHCrossRefGoogle Scholar
  25. 25.
    Lee, T.S., Hu, G.S., Shu, C.: Application of GDQ method for study of mixed convection in horizontal eccentric annuli. Int. J. Comput. Fluid Dyn. 18(1), 71–79 (2004) MATHCrossRefGoogle Scholar
  26. 26.
    Zhong, H.: Spline-based differential quadrature for fourth order differential equations and its application to Kirchhoff plates. Appl. Math. Model. 28, 353–366 (2004) MATHCrossRefGoogle Scholar
  27. 27.
    Whitham, G.B.: Linear and Nonlinear Waves. Wiley/Interscience, New York (1974) MATHGoogle Scholar
  28. 28.
    Herbst, B.M., Morris, J.L., Mitchel, A.R.: Numerical experience with the nonlinear Schrödinger equation. J. Comput. Phys. 60, 282–305 (1985) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Miles, J.W.: An envelope soliton problems. SIAM J. Appl. Math. 41, 227–230 (1981) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Fornberg, B., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. 289, 373–404 (1978) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Gardner, L.R.T., Gardner, G.A., Zaki, S.I., Sharawi, Z.E.: B-spline finite element studies of the non-linear Schrodinger equation. Comput. Methods Appl. Mech. Eng. 108, 303–318 (1993) MATHCrossRefGoogle Scholar
  32. 32.
    Gardner, L.R.T., Gardner, G.A., Zaki, S.I., Sharawi, Z.E.: A Leapfrog algorithm and stability studies for the non-linear Schrodinger equation. Arab. J. Sci. Eng., 23–32 (1993) Google Scholar
  33. 33.
    Zacharov, V.E., Shabat, A.B.: Exact theory of two dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972) Google Scholar
  34. 34.
    Tourigny, Y., Morris, J.L.: An investigation into effect of product approximation in the numerical solution of the cubic nonlinear Schrödinger equation. J. Comput. Phys. 76, 103–130 (1988) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Anadolu Guzel Sanatlar LisesiKütahyaTurkey
  2. 2.Osmangazi UniversityEskişehirTurkey

Personalised recommendations