Nonlinear Dynamics

, Volume 55, Issue 4, pp 349–353 | Cite as

A new method for finding special solutions of nonlinear diffusion equation

Original Paper


A straightforward and concise method is proposed to construct special solutions of nonlinear diffusion equation. Many new special solutions obtained. We believe this method is effective on solving other nonlinear differential equations.


Nonlinear diffusion equation Special solution Auxiliary function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dorodnitsyn, V.A., Knyazeva, I.V., Svirshchevskii, S.R.: The group properties of heat equation with source in two and three-deminsional case. Differ. Equ. 19, 1215–1223 (1983) MathSciNetGoogle Scholar
  2. 2.
    Galaktionov, V.A.: Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearties. Proc. R. Soc. Edinb. 125A, 225–246 (1995) MathSciNetGoogle Scholar
  3. 3.
    Clarkson, P.A., Mansfield, E.L.: Symmetry reductions and exact solutions of a class of nonlinear heat equations. Physica D 70, 250–288 (1994) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Fushchych, W.I., Serov, N.I., Tulupova, L.A.: The conditional invariance and exact solutions of the nonlinear diffusion equation. Proc. Acad. Sci. Ukraine 4, 37–40 (1993) Google Scholar
  5. 5.
    Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982) MATHGoogle Scholar
  6. 6.
    Bluman, G.W., Cole, J.: The general similarity solutions of the heat equation. J. Math. Mech. 18, 1025–1042 (1969) MATHMathSciNetGoogle Scholar
  7. 7.
    Bluman, G.W., Kumei, S.: On the remarkable nonlinear diffusion equation. J. Math. Phys. 21, 1019–1023 (1980) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gandarias, M.L.: New symmetries for a model of fast diffusion. Phys. Lett. A 286, 153–160 (2001) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Popovych, R.O., Vaneeva, O.O., Ivanova, N.M.: Potential nonclassical symmetries and solutions of fast diffusion equation. Phys. Lett. A 362, 166–173 (2007) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ibragimov, N.H. (ed.): Lie Group Analysis of Differential Equations Symmetries, Exact Solutions and Conservation Laws, vols. 1–3. Chemical Rubber Company, Boca Raton (1994–1996) Google Scholar
  11. 11.
    Kaptsov, O.V., Verevkin, I.V.: Differential constraints and exact solutions of nonlinear diffusion equations. J. Phys. A: Math. Gen. 36, 1401–1414 (2003) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kaptsov, O.V., Schmidt, A.V.: Linear determining equations for differential constraints. Glasgow Math. 47A, 109–120 (2005) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ames, W.F.: Nonlinear Partial Differential Equations in Engineering, vol. 2. Academic Press, New York (1972) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Math & Statistics CollegeChongqing Technology and Business UniversityChongqingChina
  2. 2.Math & Stats Dept.McMaster UniversityHamiltonCanada

Personalised recommendations