Skip to main content
Log in

Dynamics of body separation—analytical procedure

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an analytical procedure for the determination of the dynamic parameters of a remainder body after mass separation is developed. The method is based on the general principles of momentum and angular momentum of a body and system of bodies. The kinetic energy of motion of the whole body and also of the separated and remainder body is considered. The derivatives of kinetic energies with respect to the generalized velocity determine the velocity and angular velocity of the remainder body. To confirm the proposed procedure, the results are compared with those obtained using the method of momenta and angular momenta. In the paper, the theorem about increase of kinetic energies of the separated and remainder bodies for perfectly plastic separation is proved. The increase of the kinetic energies correspond to the relative velocities and angular velocities of the separated and remainder bodies. As an example, the mass separation from a pendulum is considered. The kinematic properties of the remainder pendulum are obtained using the analytic procedure. The results are in agreement with those obtained by applying the basic principles of Newton’s mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meshchersky, I.V.: Dinamika tochki peremennoj massji. Magistarskaja disertacija, Petersburgski Universitet, Petersburg (1897)

  2. Meirovitch, L.: General motion of a variable-mass flexible rocket with internal flow. J. Spacecr. Rockets 7(2), 186–195 (1970)

    Article  Google Scholar 

  3. Cornelisse, J.W., Schoyer, H.F.R., Wakker, K.F.: Rocket Propulsion and Spaceflight Dynamics. Pitman, London (1979)

    Google Scholar 

  4. Tran, T., Eke, F.O.: Effects of internal mass flow on the attitude dynamics of variable mass systems. Adv. Astronaut. Sci. 119 (Issue Suppl.), 1297–1316 (2005)

    Google Scholar 

  5. Kayuk, Ya.F., Denisenko, V.I.: Motion of a mechanical system with variable mass—inertial characteristics. Int. Appl. Mech. 40(7), 814–820 (2004)

    Article  MathSciNet  Google Scholar 

  6. Howard, J.E.: Particle dynamics with variable mass and charge. Phys. Lett. Sect. A Gen. At. Solid State Phys. 366(1–2), 91–96 (2007)

    MathSciNet  Google Scholar 

  7. McPhee, J.J., Dubey, R.N.: Dynamic analysis and computer simulation of variable-mass multi-rigid-body systems. Int. J. Numer. Methods Eng. 32(8), 1711–1725 (1991)

    Article  MATH  Google Scholar 

  8. Djerassi, S.: An algorithm for simulation of motions of ‘variable mass’ systems. Adv. Astronaut. Sci. 99(1), 461–474 (1998)

    Google Scholar 

  9. Cveticanin, L.: Vibrations of a textile machine rotor. J. Sound Vib. 97(2), 181–187 (1984)

    Article  Google Scholar 

  10. Cveticanin, L.: The oscillations of a textile machine rotor on which the textile is wound up. Mech. Mach. Theory 26(3), 253–260 (1991)

    Article  Google Scholar 

  11. Cveticanin, L.: The influence of the reactive force on the motion of the rotor on which the band is winding up. J. Sound Vib. 167, 382–384 (1993)

    Article  Google Scholar 

  12. Kayuk, Ya.F., Tilavov, A.: Motion of an elastically suspended solid of variable mass. Prikl. Mekh. 23(15), 102–109 (1987)

    Google Scholar 

  13. Kayuk, Ya.F., Akhmedov, A.: Spatial motion of an elastically suspended cylindrical body of variable mass. Prikl. Mekh. 28(7), 62–69 (1992)

    MATH  Google Scholar 

  14. Wang, S.M., Eke, F.O.: Rotational dynamics of axisymmetric variable mass systems. J. Appl. Mech. 62(4), 970–974 (1995)

    Article  MATH  Google Scholar 

  15. Cveticanin, L.: Self-excited vibrations of the variable mass rotor/fluid system. J. Sound Vib. 212(4), 685–702 (1998)

    Article  Google Scholar 

  16. Cveticanin, L.: Dynamic buckling of a single-degree-of-freedom system with variable mass. Eur. J. Mech. A/Solids 20(4), 661–672 (2001)

    Article  MATH  Google Scholar 

  17. Eke, F.O., Mao, T.C.: On the dynamics of variable mass systems. The International J. Mech. Eng. Educ. 30(2) (2002)

  18. Pesce, C.P.: The application of Lagrange equations to mechanical systems with mass explicitly dependent on position. ASME J. Appl. Mech. 70(5), 751–756 (2003)

    MATH  Google Scholar 

  19. Cveticanin, L.: The influence of the reactive force on a nonlinear oscillator with variable parameter. ASME J. Vib. Acoust. 114(4), 578–580 (1992)

    Article  Google Scholar 

  20. Ge, Z.-M., Cheng, Y.H.: Extended Kane’s equations for nonholonomic variable mass system. ASME J. Appl. Mech. 49(2), 429–431 (1982)

    MathSciNet  Google Scholar 

  21. Ge, Z.-M.: Equations of motion of nonlinear nonholonomic variable mass system with applications. ASME J. Appl. Mech. 51(2), 435–437 (1984)

    MATH  Google Scholar 

  22. Leubnert, C., Krumm, P.: Lagrangians for simple systems with variable mass. Eur. J. Phys. 11(1), 31–34 (1990)

    Article  Google Scholar 

  23. Cveticanin, L.: Conservation laws in systems with variable mass. ASME J. Appl. Mech. 60(4), 954–958 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cveticanin, L.: Some conservation laws for orbits involving variable mass and linear damping. J. Guid. Control Dyn. 17(1), 209–211 (1994)

    Article  Google Scholar 

  25. Meshchersky, I.V.: Mehanika tel peremennoj massji. Gos. Izd. Teh. Teor. Lit., Moscow (1952)

  26. Luk’yanov, L.G.: Conservative two-body problem with variable masses. Astron. Lett. 31(8), 563–568 (2005)

    Article  Google Scholar 

  27. Cveticanin, L.: Particle separation form a four particle system. Eur. J. Mech. A/Solids 26, 270–285 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Cveticanin, L., Djukic, Dj.: Motion of body with discontinual mass variation. Nonlinear Dyn. doi:10.1007/s11071-007-9275-5 (2007)

    Google Scholar 

  29. Starzhinskii, V.M.: An Advanced Course of Theoretical Mechanics. Mir Publishers, Moscow (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cveticanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cveticanin, L. Dynamics of body separation—analytical procedure. Nonlinear Dyn 55, 269–278 (2009). https://doi.org/10.1007/s11071-008-9362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9362-2

Keywords

Navigation