Nonlinear Dynamics

, Volume 55, Issue 3, pp 269–278 | Cite as

Dynamics of body separation—analytical procedure

Original Paper


In this paper, an analytical procedure for the determination of the dynamic parameters of a remainder body after mass separation is developed. The method is based on the general principles of momentum and angular momentum of a body and system of bodies. The kinetic energy of motion of the whole body and also of the separated and remainder body is considered. The derivatives of kinetic energies with respect to the generalized velocity determine the velocity and angular velocity of the remainder body. To confirm the proposed procedure, the results are compared with those obtained using the method of momenta and angular momenta. In the paper, the theorem about increase of kinetic energies of the separated and remainder bodies for perfectly plastic separation is proved. The increase of the kinetic energies correspond to the relative velocities and angular velocities of the separated and remainder bodies. As an example, the mass separation from a pendulum is considered. The kinematic properties of the remainder pendulum are obtained using the analytic procedure. The results are in agreement with those obtained by applying the basic principles of Newton’s mechanics.


Mass separation Analytical dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meshchersky, I.V.: Dinamika tochki peremennoj massji. Magistarskaja disertacija, Petersburgski Universitet, Petersburg (1897) Google Scholar
  2. 2.
    Meirovitch, L.: General motion of a variable-mass flexible rocket with internal flow. J. Spacecr. Rockets 7(2), 186–195 (1970) CrossRefGoogle Scholar
  3. 3.
    Cornelisse, J.W., Schoyer, H.F.R., Wakker, K.F.: Rocket Propulsion and Spaceflight Dynamics. Pitman, London (1979) Google Scholar
  4. 4.
    Tran, T., Eke, F.O.: Effects of internal mass flow on the attitude dynamics of variable mass systems. Adv. Astronaut. Sci. 119 (Issue Suppl.), 1297–1316 (2005) Google Scholar
  5. 5.
    Kayuk, Ya.F., Denisenko, V.I.: Motion of a mechanical system with variable mass—inertial characteristics. Int. Appl. Mech. 40(7), 814–820 (2004) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Howard, J.E.: Particle dynamics with variable mass and charge. Phys. Lett. Sect. A Gen. At. Solid State Phys. 366(1–2), 91–96 (2007) MathSciNetGoogle Scholar
  7. 7.
    McPhee, J.J., Dubey, R.N.: Dynamic analysis and computer simulation of variable-mass multi-rigid-body systems. Int. J. Numer. Methods Eng. 32(8), 1711–1725 (1991) MATHCrossRefGoogle Scholar
  8. 8.
    Djerassi, S.: An algorithm for simulation of motions of ‘variable mass’ systems. Adv. Astronaut. Sci. 99(1), 461–474 (1998) Google Scholar
  9. 9.
    Cveticanin, L.: Vibrations of a textile machine rotor. J. Sound Vib. 97(2), 181–187 (1984) CrossRefGoogle Scholar
  10. 10.
    Cveticanin, L.: The oscillations of a textile machine rotor on which the textile is wound up. Mech. Mach. Theory 26(3), 253–260 (1991) CrossRefGoogle Scholar
  11. 11.
    Cveticanin, L.: The influence of the reactive force on the motion of the rotor on which the band is winding up. J. Sound Vib. 167, 382–384 (1993) CrossRefGoogle Scholar
  12. 12.
    Kayuk, Ya.F., Tilavov, A.: Motion of an elastically suspended solid of variable mass. Prikl. Mekh. 23(15), 102–109 (1987) Google Scholar
  13. 13.
    Kayuk, Ya.F., Akhmedov, A.: Spatial motion of an elastically suspended cylindrical body of variable mass. Prikl. Mekh. 28(7), 62–69 (1992) MATHGoogle Scholar
  14. 14.
    Wang, S.M., Eke, F.O.: Rotational dynamics of axisymmetric variable mass systems. J. Appl. Mech. 62(4), 970–974 (1995) MATHCrossRefGoogle Scholar
  15. 15.
    Cveticanin, L.: Self-excited vibrations of the variable mass rotor/fluid system. J. Sound Vib. 212(4), 685–702 (1998) CrossRefGoogle Scholar
  16. 16.
    Cveticanin, L.: Dynamic buckling of a single-degree-of-freedom system with variable mass. Eur. J. Mech. A/Solids 20(4), 661–672 (2001) MATHCrossRefGoogle Scholar
  17. 17.
    Eke, F.O., Mao, T.C.: On the dynamics of variable mass systems. The International J. Mech. Eng. Educ. 30(2) (2002) Google Scholar
  18. 18.
    Pesce, C.P.: The application of Lagrange equations to mechanical systems with mass explicitly dependent on position. ASME J. Appl. Mech. 70(5), 751–756 (2003) MATHGoogle Scholar
  19. 19.
    Cveticanin, L.: The influence of the reactive force on a nonlinear oscillator with variable parameter. ASME J. Vib. Acoust. 114(4), 578–580 (1992) CrossRefGoogle Scholar
  20. 20.
    Ge, Z.-M., Cheng, Y.H.: Extended Kane’s equations for nonholonomic variable mass system. ASME J. Appl. Mech. 49(2), 429–431 (1982) MathSciNetGoogle Scholar
  21. 21.
    Ge, Z.-M.: Equations of motion of nonlinear nonholonomic variable mass system with applications. ASME J. Appl. Mech. 51(2), 435–437 (1984) MATHGoogle Scholar
  22. 22.
    Leubnert, C., Krumm, P.: Lagrangians for simple systems with variable mass. Eur. J. Phys. 11(1), 31–34 (1990) CrossRefGoogle Scholar
  23. 23.
    Cveticanin, L.: Conservation laws in systems with variable mass. ASME J. Appl. Mech. 60(4), 954–958 (1993) MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Cveticanin, L.: Some conservation laws for orbits involving variable mass and linear damping. J. Guid. Control Dyn. 17(1), 209–211 (1994) CrossRefGoogle Scholar
  25. 25.
    Meshchersky, I.V.: Mehanika tel peremennoj massji. Gos. Izd. Teh. Teor. Lit., Moscow (1952) Google Scholar
  26. 26.
    Luk’yanov, L.G.: Conservative two-body problem with variable masses. Astron. Lett. 31(8), 563–568 (2005) CrossRefGoogle Scholar
  27. 27.
    Cveticanin, L.: Particle separation form a four particle system. Eur. J. Mech. A/Solids 26, 270–285 (2007) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Cveticanin, L., Djukic, Dj.: Motion of body with discontinual mass variation. Nonlinear Dyn. doi: 10.1007/s11071-007-9275-5 (2007) Google Scholar
  29. 29.
    Starzhinskii, V.M.: An Advanced Course of Theoretical Mechanics. Mir Publishers, Moscow (1982) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Faculty of Technical SciencesNovi SadSerbia

Personalised recommendations