Nonlinear Dynamics

, Volume 55, Issue 1–2, pp 13–30 | Cite as

System level modeling of a transcritical vapor compression system for bistability analysis

Original Paper


This study seeks to understand the multiplicity of stable solutions in a transcritical hot water heat pump as it has been observed in prototype units that two steady states exist (very efficient and inefficient). Reduced order dynamic modeling highlights the state-dependent heat transfer coefficient in the evaporator dynamics as a contributing cause to this bistable phenomena. Specifically, the bilinear nature of the controlled gas cooler and its coupling to the dynamic nonlinearity in the evaporator induces a system-wide bifurcation in the equilibrium conditions with regard to system efficiency. Model results are presented to illustrate this, along with steady-state and dynamic data to confirm the accuracy of the model. Finally, the bifurcation behavior is presented which is comparable to the behavior found in the experiment. The contribution of this paper is a presentation of a dynamic phenomena in a real world application that has previously been unpublished. In addition to this, this paper motivates a reason for this phenomena from first principles. This is a preliminary step to gaining control over unwanted dynamics in this application by either nonlinear control or component redesign.


CO2 refrigerant Heat pump efficiency Multiple equilibria Heat-exchanger modeling Dynamical analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kim, M.-H., Pettersen, J., Bullard, C.W.: Fundamental process and system design issues in CO2 vapor compression systems. Prog. Energy Combust. Sci. 30, 119–174 (2004) CrossRefGoogle Scholar
  2. 2.
    Neksa, P.: CO2 heat pump systems. Int. J. Refrig. 25, 421–427 (2002) CrossRefGoogle Scholar
  3. 3.
    Dhar, M., Soedel, W.: Transient analysis of a vapor compression refrigeration system: Part: I and II. In: Int. Inst. Refrig., Paris, France, by Organ and Sci. Comm. of the 15th Int. Congr. of Refrig., Padova, Italy, pp. 1049–1067 (1980) Google Scholar
  4. 4.
    Yasuda, H., Touber, S., Machielsen, C.H.M.: Simulation model of a vapor compression refrigeration system. ASHRAE Trans. 89(2), 408–425 (1983) Google Scholar
  5. 5.
    He, X., Liu, S., Asada, H.: Modeling of vapor compression cycles for multivariable feedback control of HVAC systems. ASME J. Dyn. Syst. Meas. Control 119, 183–191 (1997) MATHCrossRefGoogle Scholar
  6. 6.
    Rasmussen, B., et al.: Control-oriented modeling and analysis of automotive transcritical AC system dynamics. Proc. Am. Control Conf. 4, 3111–3116 (2002) Google Scholar
  7. 7.
    Svensson, M.C.: Model-based optimizing control of a water-to-water heat pump unit. Mod. Identif. Control 17(4), 279–295 (1996) MATHGoogle Scholar
  8. 8.
    Gordon, B.W., Asada, H.: Modeling, realization, and simulation of thermo-fluid systems using singularly perturbed sliding manifolds. ASME J. Dyn. Syst. Meas. Control 22, 699 (2000) CrossRefGoogle Scholar
  9. 9.
    Grald, E.W., MacArthur, J.W.: A moving-boundary formulation for modeling time-dependent two-phase flows. Int. J. Heat Fluid Flow 13(3), 266–272 (1992) CrossRefGoogle Scholar
  10. 10.
    Robinson, D.M., Groll, E.A.: Theoretical performance comparison of CO2 transcritical cycle technology vs. HCFC-22. HVAC&R Res. 6(4) (2000) Google Scholar
  11. 11.
    Bauer, O.: Modelling of two-phase flows with modelica. Masters Thesis, Department of Automatic Control, Lund Institute of Technology, ISSN 0280-5316 (1999) Google Scholar
  12. 12.
    Aldridge, C.J., Fowler, A.C.: Stability and instability in evaporating two-phase flows. Surv. Math. Ind. 6, 75–107 (1996) MATHMathSciNetGoogle Scholar
  13. 13.
    Broersen, P., van der Jagt, M.: Hunting of evaporators controlled by a thermostatic expansion valve. ASME J. Dyn. Syst. Meas. Control 102 (1980) Google Scholar
  14. 14.
    Nyers, J., Stoyan, G.: A dynamical model adequate for controlling the evaporator of a heat pump. Int. J. Refrig. 17(2) (1994) Google Scholar
  15. 15.
    Gruhle, W.D., Isermann, R.: Modeling and control of a refrigerant evaporator. ASME J. Dyn. Syst. Meas. Control 107, 235–239 (1980) CrossRefGoogle Scholar
  16. 16.
    Pettersen, J., Rieberer, R., Munkejord, S.T.: Flow vaporization of CO2 in microchannel tubes. Exp. Therm. Fluid Sci. 28(2–3), 111–121 (2004) CrossRefGoogle Scholar
  17. 17.
    Yun, R., Kim, Y., Kim, M.S.: Convective boiling heat transfer characteristics of CO2 in microchannels. Int. J. Heat Mass Transf. 48, 235–242 (2005) CrossRefGoogle Scholar
  18. 18.
    Hwang, Y.: Comprehensive investigation of carbon dioxide refrigeration cycle. PhD Thesis, University of Maryland (1997) Google Scholar
  19. 19.
    Thomas, P.: Simulation of Industrial Processes. Butterworth-Heinemann, Oxford (1999) Google Scholar
  20. 20.
    Rasmussen, B.P., Alleyne, A., Musser, A.: Model-driven system identification of transcritical vapor compression systems. IEEE Trans. Control Syst. Technol. 13(3), 444–451 (2005) CrossRefGoogle Scholar
  21. 21.
    Chen, G., Moiola, J.L., Wang, H.O.: Bifurcation control: theories, methods, and applications. Int. J. Bifurc. Chaos 10(3), 511–548 (2000) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  2. 2.University of OklahomaNormanUSA

Personalised recommendations