Advertisement

Nonlinear Dynamics

, Volume 53, Issue 4, pp 303–320 | Cite as

Mechanistic mathematical model of kinesin under time and space fluctuating loads

  • Adam G. Hendricks
  • Bogdan I. Epureanu
  • Edgar Meyhöfer
Original Paper

Abstract

Kinesin-1 is a processive molecular motor that converts the energy from ATP hydrolysis and Brownian motion into directed movement. Single-molecule techniques have allowed the experimental characterization of single kinesins in vitro at a range of loads and ATP concentrations, and shown that each kinesin molecule moves processively along microtubules by alternately advancing each of its motor domains in a hand-over-hand fashion. Existing models of kinesin movement focus on time and space invariant loads, and hence are not well suited to describing transient dynamics. However, kinesin must undergo transient dynamics when external perturbations (e.g., interactions with other kinesin molecules) cause the load on each motor to change in time. We have developed a mechanistic model that describes, deterministically, the average motion of kinesin under time and space varying loads. The diffusion is modeled using a novel approach inspired by the classical closed form solution for the mean first-passage time. In the new approach, the potential in which the free motor domain diffuses is time varying and updated at each instant during the motion. The mechanistic model is able to predict experimental force-velocity data over a wide range of ATP concentrations (1 μM–10 mM). This mechanistic approach to modeling the mechanical behavior of the motor domains of kinesin allows rational and efficient characterization of the mechanochemical coupling, and provides predictions of kinesin with time-varying loads, which is critical for modeling coordinated transport involving several kinesin molecules.

Keywords

Kinesin Mechanistic modeling Transient dynamics Synchronization Single-molecule biophysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asbury, C.L., Fehr, A.N., Block, S.M.: Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003) CrossRefGoogle Scholar
  2. 2.
    Astumian, R.D.: Thermodynamics and kinetics of a Brownian motor. Science 276, 917–921 (1997) CrossRefGoogle Scholar
  3. 3.
    Astumian, R.D., Derenyi, I.: A chemically reversible Brownian motor: application to kinesin and ncd. Biophys. J. 77, 993–1002 (1999) Google Scholar
  4. 4.
    Badoual, M., Julicher, F., Prost, J.: Bidirectional cooperative motion of molecular motors. Proc. Natl. Acad. Sci. 99(10), 6696–6701 (2002) CrossRefGoogle Scholar
  5. 5.
    Berg, H.C.: Random Walks in Biology. Princeton University Press, Princeton (1993) Google Scholar
  6. 6.
    Bier, M.: Brownian ratchets in physics and biology. Contemp. Phys. 38(6), 371–379 (1997) CrossRefGoogle Scholar
  7. 7.
    Bier, M.: The noisy steps of a motor protein. In: CP655, Unsolved Problems of Noise and Fluctuations: UPoN 2002: Third International Conference, pp. 290–297 (2003) Google Scholar
  8. 8.
    Bier, M.: Modelling processive motor proteins: moving on two legs in the microscopic realm. Contemp. Phys. 46(1), 41–51 (2005) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bier, M.: The stepping motor protein as a feedback control ratchet. Biosystems 88, 301–307 (2007) CrossRefGoogle Scholar
  10. 10.
    Block, S.M., Asbury, C.L., Shaevitz, J.W., Lang, M.J.: Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl. Acad. Sci. 100(5), 2351–2356 (2003) CrossRefGoogle Scholar
  11. 11.
    Block, S.M., Goldstein, L.S.B., Schnapp, B.J.: Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990) CrossRefGoogle Scholar
  12. 12.
    Bloom, G.S., Wagner, M.C., Pfister, K.K., Brady, S.T.: Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide. Biochem. J. 27, 3409–3416 (1988) CrossRefGoogle Scholar
  13. 13.
    Brady, S.T.: A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73–75 (1985) CrossRefGoogle Scholar
  14. 14.
    Camalet, S., Duke, T., Julicher, F., Prost, J.: Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc. Natl. Acad. Sci. 97(7), 3183–3188 (2000) CrossRefGoogle Scholar
  15. 15.
    Camalet, S., Julicher, F., Prost, J.: Self-organized beating and swimming of internally driven filaments. Phys. Rev. Lett. 82(7), 1590–1593 (1999) CrossRefGoogle Scholar
  16. 16.
    Carter, N.J., Cross, R.A.: Mechanics of the kinesin step. Nature 435, 308–312 (2005) CrossRefGoogle Scholar
  17. 17.
    Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G., Dahan, M.: Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett. 6(7), 1491–1495 (2006) CrossRefGoogle Scholar
  18. 18.
    Cross, R.A.: Directing direction. Nature 406, 839–840 (2000) CrossRefGoogle Scholar
  19. 19.
    Cross, R.A.: The kinetic mechanism of kinesin. Trends Biochem. Sci. 29(6), 301–309 (2004) CrossRefGoogle Scholar
  20. 20.
    de Cuevas, M., Tao, T., Goldstein, L.S.B.: Evidence that the stalk of drosophila kinesin heavy chain is an alpha-helical coiled-coil. J. Cell Biol. 116, 957–965 (1992) CrossRefGoogle Scholar
  21. 21.
    Derenyi, I., Vicsek, T.: The kinesin walk: a dynamic model with elastically coupled heads. Proc. Natl. Acad. Sci. 93, 6775–6779 (1996) CrossRefGoogle Scholar
  22. 22.
    Diehl, M.R., Zhang, K., Lee, H.J., Tirrell, D.A.: Engineering cooperativity in biomotor-protein assemblies. Science 311, 1468–1471 (2006) CrossRefGoogle Scholar
  23. 23.
    Duke, T.: Push or pull? Teams of motor proteins have it both ways. Proc. Natl. Acad. Sci. 99(10), 6521–6523 (2002) CrossRefGoogle Scholar
  24. 24.
    Endow, S.A.: Determinants of molecular motor directionality. Nat. Cell Biol. 1, E163–E167 (1999) CrossRefGoogle Scholar
  25. 25.
    English, B.P., Min, W., van Oijen, A.M., Lee, K.T., Luo, G., Sun, H., Cherayil, B.J., Kou, S.C., Xie, X.S.: Ever-fluctuating single enzyme molecules: Michaelis–Menten equation revisited. Nat. Chem. Biol. 2(2), 87–94 (2006) CrossRefGoogle Scholar
  26. 26.
    Fisher, M.E., Kim, Y.C.: Kinesin crouches to sprint but resists pushing. Proc. Natl. Acad. Sci. 102(45), 16209–16214 (2005) CrossRefGoogle Scholar
  27. 27.
    Fisher, M.E., Kolomeisky, A.B.: Molecular motors and the forces they exert. Physica A 274, 241–266 (1999) CrossRefGoogle Scholar
  28. 28.
    Fisher, M.E., Kolomeisky, A.B.: Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl. Acad. Sci. 98(14), 7748–7753 (2001) CrossRefGoogle Scholar
  29. 29.
    Fox, R.F., Choi, M.H.: Rectified Brownian motion and kinesin motion along microtubules. Phys. Rev. E 63, 051901 (2001) CrossRefGoogle Scholar
  30. 30.
    Gilbert, S.P., Moyer, M.L., Johnson, K.A.: Alternating mechanism of the kinesin ATPase. Biochem. J. 37, 792–799 (1998) CrossRefGoogle Scholar
  31. 31.
    Gilbert, S.P., Webb, M.R., Brune, M., Johnson, K.A.: Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671–676 (1995) CrossRefGoogle Scholar
  32. 32.
    Grosh, K., Zheng, J.F., Zou, Y., de Boer, E., Nuttall, A.L.: High-frequency electromotile responses in the cochlea. J. Acoust. Soc. Am. 115(5), 2178–2184 (2004) CrossRefGoogle Scholar
  33. 33.
    Gross, S.P., Tuma, M.C., Deacon, S.W., Serpinskaya, A.S., Reilein, A.R., Gelfand, V.I.: Interactions and regulation of molecular motors in xenopus melanophores. J. Cell Biol. 156, 855–865 (2002) CrossRefGoogle Scholar
  34. 34.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Berlin (1983) MATHGoogle Scholar
  35. 35.
    Gunawardena, S., Goldstein, L.S.B.: Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J. Neurobiol. 58, 258–271 (2004) CrossRefGoogle Scholar
  36. 36.
    Hackney, D.D.: Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448–450 (1995) CrossRefGoogle Scholar
  37. 37.
    Hackney, D.D., Stock, M.F.: Kinesin’s IAK tail domain inhibits initial microtubule-stimulated ADP release. Nat. Cell Biol. 2, 257–260 (2000) CrossRefGoogle Scholar
  38. 38.
    Hancock, W.O., Howard, J.: Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc. Natl. Acad. Sci. 96(23), 13147–13152 (1999) CrossRefGoogle Scholar
  39. 39.
    Hess, H.: Towards devices powered by biomolecular motors. Science 312(5775), 860–861 (2006) CrossRefGoogle Scholar
  40. 40.
    Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001) Google Scholar
  41. 41.
    Howard, J., Hudspeth, A.J., Vale, R.D.: Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989) CrossRefGoogle Scholar
  42. 42.
    Huang, T.G., Suhan, J., Hackney, D.D.: Drosophila kinesin motor domain extending to amino acid position 392 is dimeric when expressed in escherichia coli. J. Biol. Chem. 269, 16502–16507 (1994) Google Scholar
  43. 43.
    Iwasa, K.H.: A two-state piezoelectric model for outer hair cell motility. Biophys. J. 81, 2495–2506 (2001) Google Scholar
  44. 44.
    Jaud, J., Bathe, F., Schliwa, M., Rief, M., Woehlke, G.: Flexibility of the neck domain enhances kinesin-1 motility under load. Biophys. J. 91, 1407–1412 (2006) CrossRefGoogle Scholar
  45. 45.
    Julicher, F., Prost, J.: Spontaneous oscillations of collective molecular motors. Phys. Rev. Lett. 78(23), 4510–4514 (1997) CrossRefGoogle Scholar
  46. 46.
    Kanada, R., Sasaki, K.: Theoretical model for motility and processivity of two-headed molecular motors. Phys. Rev. E 67, 061917 (2003) CrossRefGoogle Scholar
  47. 47.
    Keller, D., Bustamante, C.: The mechanochemistry of molecular motors. Biophys. J. 78, 541–556 (2000) CrossRefGoogle Scholar
  48. 48.
    Klumpp, S., Mielke, A., Wald, C.: Noise-induced transport of two coupled particles. Phys. Rev. E 63, 031914 (2001) CrossRefGoogle Scholar
  49. 49.
    Kojima, H., Muto, E., Yanagida, T.: Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73(4), 2012–2022 (1997) Google Scholar
  50. 50.
    Kolomeisky, A.B., Stukalin, E.B., Popov, A.A.: Understanding mechanochemical coupling in kinesins using first-passage time. Phys. Rev. E 71, 031902 (2005) CrossRefGoogle Scholar
  51. 51.
    Kosik, K.S., Orecchio, L.D., Schnapp, B.J., Inouye, H., Neve, R.L.: The primary structure and analysis of the squid heavy chain. J. Biol. Chem. 265, 3278–3283 (1990) Google Scholar
  52. 52.
    Kou, S.C., Cherayil, B.J., Min, W., English, B.P., Xie, X.S.: Single-molecule Michaelis–Menten equations. J. Phys. Chem. B 109, 19068–19081 (2005) CrossRefGoogle Scholar
  53. 53.
    Kull, F.J., Endow, S.A.: Kinesin: switch I and II and the motor mechanism. J. Cell Sci. 115, 15–23 (2002) Google Scholar
  54. 54.
    Kull, F.J., Endow, S.A.: A new structural state of myosin. Trends Biochem. Sci. 29(3), 103–106 (2004) CrossRefGoogle Scholar
  55. 55.
    Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V.I., Selvin, P.R.: Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement. Science 308, 1469–1472 (2005) CrossRefGoogle Scholar
  56. 56.
    Kuznetsov, S.A., Vaisberg, E.A., Shanina, N.A., Magretova, N.N., Chernyak, V.Y., Gelfand, V.I.: The quaternary structure of bovine brain kinesin. EMBO J. 7, 353–356 (1988) Google Scholar
  57. 57.
    Lawrence, C.J., Dawe, R.K., Christie, K.R., Cleveland, D.W., Dawson, S.C., Endow, S.A., Goldstein, L.S.B., Goodson, H.V., Hirokawa, N., Howard, J., Malmberg, R.L., McIntosh, J.R., Miki, H., Mitchison, T.J., Okada, Y., Reddy, A.S.N., Saxton, W.M., Schliwa, M., Scholey, J.M., Vale, R.D., Walczak, C.E., Wordeman, L.: A standardized kinesin nomenclature. J. Cell Biol. 167(1), 19–22 (2004) CrossRefGoogle Scholar
  58. 58.
    Levi, V., Serpinskaya, A.S., Gratton, E., Gelfand, V.I.: Organelle transport along microtubules in xenopus melanophores: evidence for cooperation between multiple motors. Biophys. J. 90, 318–327 (2006) CrossRefGoogle Scholar
  59. 59.
    Lin, C.-T., Kao, M.-T., Kurabayashi, K., Meyhöfer, E.: Efficient designs for powering microscale devices with nanoscale biomolecular motors. Small 2(2), 281–287 (2006) MATHCrossRefGoogle Scholar
  60. 60.
    Meyhöfer, E., Howard, J.: The Force generated by a single kinesin molecule against an elastic load. Proc. Natl. Acad. Sci. 92, 574–578 (1995) CrossRefGoogle Scholar
  61. 61.
    Min, W., English, B.P., Luo, G., Cherayil, B.J., Kou, S.C., Xie, X.S.: Fluctuating enzymes: lessons from single-molecule studies. Acc. Chem. Res. 38, 923–931 (2005) CrossRefGoogle Scholar
  62. 62.
    Nan, X., Sims, P.A., Chen, P., Xie, X.S.: Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J. Phys. Chem. B 109, 24220–24224 (2005) CrossRefGoogle Scholar
  63. 63.
    Peskin, C.S., Oster, G.: Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J. 68, 202–211 (1995) Google Scholar
  64. 64.
    Ray, S., Meyhöfer, E., Milligan, R.A., Howard, J.: Kinesin follows the microtubule’s protofilament axis. J. Cell Biol. 121(5), 1083–1093 (1993) CrossRefGoogle Scholar
  65. 65.
    Rice, S., Lin, A.W., Safer, D., Hart, C.L., Naber, N., Carragher, B.O., Cain, S.M., Pechatnikova, E., Wilson-Kubalek, E.M., Whittaker, M., Pae, E., Cooke, R., Taylor, E.W., Milligan, R.A., Vale, R.D.: A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999) CrossRefGoogle Scholar
  66. 66.
    Risken, H.: The Fokker–Planck Equation: Methods of Solution and Application, 2nd edn. Springer, Berlin (1989) Google Scholar
  67. 67.
    Sack, S., Kull, F.J., Mandelkow, E.: Motor proteins of the kinesin family—structures, variations, and nucleotide binding sites. Eur. J. Biochem. 262(1), 1–11 (1999) CrossRefGoogle Scholar
  68. 68.
    Schnitzer, M.J., Block, S.M.: Kinesin hydrolyses one ATP per 8-nm step. Lett. Nat. 388, 386–390 (1997) CrossRefGoogle Scholar
  69. 69.
    Scholey, J.M., Heuser, J., Yang, J.T., Goldstein, L.S.B.: Identification of globular mechanochemical heads of kinesin. Nature 338, 355–357 (1989) CrossRefGoogle Scholar
  70. 70.
    Seiler, S., Kirchner, C., Horn, C., Kallipolitou, A., Woehlke, G., Schliwa, M.: Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nat. Cell Biol. 2, 333–338 (2000) CrossRefGoogle Scholar
  71. 71.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus Publishing, Cambridge (1994) Google Scholar
  72. 72.
    Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York (2004) Google Scholar
  73. 73.
    Svoboda, K., Block, S.M.: Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994) CrossRefGoogle Scholar
  74. 74.
    Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M.: Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993) CrossRefGoogle Scholar
  75. 75.
    Vale, R.D.: The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003) CrossRefGoogle Scholar
  76. 76.
    Vale, R.D., Funatsu, T., Pierce, D.W., Romberg, L., Harada, Y., Yanagida, T.: Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996) CrossRefGoogle Scholar
  77. 77.
    Vale, R.D., Reese, T.S., Sheetz, M.P.: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985) CrossRefGoogle Scholar
  78. 78.
    van den Heuvel, M.G.L., de Graaff, M.P., Dekker, C.: Molecular sorting by electrical steering of mictrotubules in kinesin-coated channels. Science 312, 910–914 (2006) CrossRefGoogle Scholar
  79. 79.
    Verhey, K.J., Meyer, D., Deehan, R., Blenis, J., Schnapp, B.J., Rapoport, T.A., Margolis, B.: Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152(5), 959–970 (2001) CrossRefGoogle Scholar
  80. 80.
    Vilfan, A., Duke, T.: Synchronization of active mechanical oscillators by an inertial load. Phys. Rev. Lett. 91(11), 114101 (2003) CrossRefGoogle Scholar
  81. 81.
    Visscher, K., Schnitzer, M.J., Block, S.M.: Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999) CrossRefGoogle Scholar
  82. 82.
    Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R.: Kinesin walks hand-over-hand. Science 303, 676–678 (2004) CrossRefGoogle Scholar
  83. 83.
    Zeldovich, K.B., Joanny, J.F., Prost, J.: Motor proteins transporting cargos. Eur. Phys. J. E 17, 155–163 (2005) CrossRefGoogle Scholar
  84. 84.
    Zheng, J., Madison, L.D., Oliver, D., Fakler, B., Dallos, P.: Prestin, the motor protein of outer hair cells. Audiol. Neuro-Ontol. 7(1), 9–12 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Adam G. Hendricks
    • 1
  • Bogdan I. Epureanu
    • 1
  • Edgar Meyhöfer
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Departments of Biomedical and Mechanical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations