Nonlinear Dynamics

, Volume 53, Issue 1–2, pp 153–165 | Cite as

Exponential synchronization of stochastic delayed discrete-time complex networks

  • Jinling Liang
  • Zidong Wang
  • Xiaohui Liu
Original Paper


This paper is concerned with the problem of synchronization for stochastic discrete-time drive-response networks with time-varying delay. By employing the Lyapunov functional method combined with the stochastic analysis as well as the feedback control technique, several sufficient conditions are established that guarantee the exponentially mean-square synchronization of two identical delayed networks with stochastic disturbances. These sufficient conditions, which are expressed in terms of linear matrix inequalities (LMIs), can be solved efficiently by the LMI toolbox in Matlab. A particular feature of the LMI-based synchronization criteria is that they are dependent not only on the connection matrices in the drive networks and the feedback gains in the response networks, but also on the lower and upper bounds of the time-varying delay, and are therefore less conservative than the delay-independent ones. Two numerical examples are exploited to demonstrate the feasibility and applicability of the proposed synchronization approaches.


Synchronization Discrete-time networks Stochastic disturbances Time-varying delay Feedback controller Exponential mean square stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boukas, E.K., Al-Muthairi, N.F.: Delay-dependent stabilization of singular linear systems with delays. Int. J. Innov. Comput. Inf. Control 2(2), 283–291 (2006) Google Scholar
  2. 2.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994) MATHGoogle Scholar
  3. 3.
    Cao, J., Lu, J.: Adaptive synchronization of neural networks with or without time-varying delays. Chaos 16, 013133 (2006) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cao, J., Li, P., Wang, W.W.: Global synchronization in arrays of delayed neural networks with constant and delayed coupling. Phys. Lett. A 353(4), 318–325 (2006) CrossRefGoogle Scholar
  5. 5.
    Chen, B., Lam, J., Xu, S.: Memory state feedback guaranteed cost control for neutral delay systems. Int. J. Innov. Comput. Inf. Control 2(2), 293–303 (2006) Google Scholar
  6. 6.
    EI Ghaoui, L., Oustry, F., Ait Rami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Autom. Control 42(8), 1171–1176 (1997) CrossRefGoogle Scholar
  7. 7.
    Gao, H., Lam, J., Chen, G.: New criteria for synchronization stability of general complex dynamical networks with coupling delays. Phys. Lett. A. 360, 263–273 (2006) CrossRefMATHGoogle Scholar
  8. 8.
    Gao, H., Lam, J., Wang, Z.: Discrete bilinear stochastic systems with time-varying delay: stability analysis and control synthesis. Chaos Solitons Fractals 34, 394–404 (2007) CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Li, C.G., Chen, G.: Synchronization in general complex dynamical networks with coupling delays. Physica A 343, 263–278 (2004) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Li, Z., Chen, G.: Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst.-II 53(1), 28–33 (2006) CrossRefGoogle Scholar
  11. 11.
    Huang, X., Cao, J.: Generalized synchronization for delayed chaotic neural networks: a novel coupling scheme. Nonlinearity 19, 2797–2811 (2006) CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Jost, J., Joy, M.: Special properties and synchronization in coupled map lattices. Phys. Rev. E 65, 061201 (2002) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Khasminskii, R.Z.: Stochastic Stability of Differential Equations. Alphen aan den Rijn, Sijthoffand Noor, Khasminskiidhoff (1980) Google Scholar
  14. 14.
    Leibfritz, F.: An LMI-based algorithm for designing suboptimal static H 2/H output feedback controllers. SIAM J. Control Optim. 57, 1711–1735 (2001) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Liu, Y., Wang, Z., Liu, X.: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw. 19(5), 667–675 (2006) CrossRefMATHGoogle Scholar
  16. 16.
    Liu, Y., Wang, Z., Liu, X.: Design of exponential state estimates for neural networks with mixed time delays. Phys. Lett. A 364, 401–412 (2007) CrossRefGoogle Scholar
  17. 17.
    Lu, J.Q., Cao, J.: Synchronization-based approach for parameters identification in delayed chaotic neural networks. Physica A 382, 672–682 (2007) CrossRefGoogle Scholar
  18. 18.
    Lu, W.L., Chen, T.P.: Synchronization of coupled connected neural networks with delays. IEEE Trans. Circuits Syst.-I 51(12), 2491–2503 (2004) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Lü, J.H., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50, 841–846 (2005) CrossRefGoogle Scholar
  20. 20.
    Lü, J.H., Yu, X.H., Chen, G., Cheng, D.Z.: Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circuits Syst.-I 51, 787–796 (2004) CrossRefGoogle Scholar
  21. 21.
    Michael, B., Perez, J., Martinez-Zuniga, R.: Optimal filtering for nonlinear polynomial systems over linear observations with delay. Int. J. Innov. Comput. Inf. Control 2(4), 863–874 (2006) Google Scholar
  22. 22.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Perez-Munuzuri, V., Perez-Villar, V., Chua, L.O.: Autowaves for image processing on a two-dimensional CNN array of excitable nonlinear circuits: flat and Wrinkled labyrinths. IEEE Trans. Circuits Syst.-I 40, 174–181 (1993) CrossRefMATHGoogle Scholar
  24. 24.
    Toroczkai, Z.: Complex networks: the challenge of interaction topology. Los Alamos Sci. (29) 94–109 (2005) Google Scholar
  25. 25.
    Wang, X.-F., Chen, G.: Synchronization in small-world dynamical networks. Int. J. Bifurc. Chaos 12(1), 187–192 (2002) CrossRefGoogle Scholar
  26. 26.
    Wang, X.-F., Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circuits Syst.-I 49(1), 54–62 (2002) CrossRefGoogle Scholar
  27. 27.
    Wang, Z., Liu, Y., Li, M., Liu, X.: Stability analysis for stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 17(3), 814–820 (2006) CrossRefGoogle Scholar
  28. 28.
    Wang, Z., Liu, Y., Fraser, K., Liu, X.: Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays. Phys. Lett. A 354(4), 288–297 (2006) CrossRefGoogle Scholar
  29. 29.
    Wu, C.W.: Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling. IEEE Trans. Circuits Syst.-I 50(2), 294–297 (2003) CrossRefGoogle Scholar
  30. 30.
    Wu, C.W.: Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling. IEEE Trans. Circuits Syst.-II 52(5), 282–286 (2005) CrossRefGoogle Scholar
  31. 31.
    Zheleznyak, A., Chua, L.O.: Coexistence of low- and high-dimensional spatio-temporal chaos in a chain of dissipatively coupled Chua’s circuits. Int. J. Bifurc. Chaos 4(3), 639–674 (1994) CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of MathematicsSoutheast UniversityNanjingChina
  2. 2.Department of Information Systems and ComputingBrunel UniversityMiddlesexUK

Personalised recommendations