Nonlinear Dynamics

, Volume 53, Issue 1–2, pp 107–115 | Cite as

Adaptive synchronization of uncertain dynamical networks with delayed coupling

  • Jianquan Lu
  • Jinde Cao
Original Paper


We propose a simple scheme for the synchronization of an uncertain complex dynamical network with delayed coupling. Based on the Lyapunov stability theory of functional differential equations, certain controllers can be designed for ensuring the states of uncertain dynamical network with coupling delays to globally asymptotically synchronize by combining the adaptive method and linear feedback with the updated feedback strength. Different update gains η i will lead to different rates toward synchrony, the choice of which depends on the concrete systems and network models. This strategy can be applied to any complex dynamical network (regular, small-world, scale-free or random). Numerical examples with respectively nearest-neighbor coupling and scale-free structure are given to demonstrate the effectiveness of our presented scheme.


Adaptive synchronization Complex networks Time delay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998) CrossRefGoogle Scholar
  2. 2.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001) CrossRefGoogle Scholar
  4. 4.
    Lu, J.Q., He, J., Cao, J.D., Gao, Z.Q.: Topology influences performance in the associative memory neural networks. Phys. Lett. A 354(5–6), 335–343 (2006) CrossRefGoogle Scholar
  5. 5.
    Liu, Y., Takiguchi, Y., Davis, P., Aida, T., Saito, S., Liu, J.M.: Injection locking and synchronization of chaos in semiconductor lasers. Appl. Phys. Lett. 80, 4306–4308 (2002) CrossRefGoogle Scholar
  6. 6.
    Kim, K.T., Kim, M.S., Chong, Y., Niemeyer, J.: Simulations of collective synchronization in Josephson junction arrays. Appl. Phys. Lett. 88, 062501 (2006) CrossRefGoogle Scholar
  7. 7.
    Lu, J.Q., Cao, J.D.: Adaptive synchronization in tree-like dynamical networks. Nonlinear Anal. Real World Appl. 8(4), 1252–1260 (2007) CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Lu, J.Q., Ho, D.W.C.: Local and global synchronization in general complex dynamical networks with delay coupling. Chaos Solitons Fractals (2006). doi: 10.1016/j.chaos.2006.10.030 Google Scholar
  9. 9.
    Baek, S.J., Ott, E.: Onset of synchronization in systems of globally coupled chaotic maps. Phys. Rev. E 69(6), 66210 (2004) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Donetti, L., Hurtado, P.I., Munoz, M.A.: Entangled networks, synchronization, and optimal network topology. Phys. Rev. Lett. 95, 188701 (2005) CrossRefGoogle Scholar
  11. 11.
    Belykh, I., de Lange, E., Hasler, M.: Synchronization of bursting neurons: what matters in the network topology. Phys. Rev. Lett. 94(18), 188101 (2005) CrossRefGoogle Scholar
  12. 12.
    Zhou, J., Lu, J., Lü, J.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Autom. Control 51(4), 652–656 (2006) CrossRefGoogle Scholar
  13. 13.
    Wang, W., Cao, J.: Synchronization in an array of linearly coupled networks with time-varying delay. Physica A: Stat. Mech. Appl. 366, 197–211 (2006) CrossRefGoogle Scholar
  14. 14.
    Wang, X.F.: Complex networks: topology, dynamics and synchronization. Int. J. Bifurc. Chaos 12(5), 885–916 (2002) CrossRefMATHGoogle Scholar
  15. 15.
    Lu, J.Q., Ho, D.W.C., Liu, M.: Globally exponential synchronization in an array of asymmetric coupled neural networks. Phys. Lett. A 369, 444–451 (2007) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Pikovsky, A., Rosenblum, M., Kurths, J., Hilborn, R.C.: Synchronization: a universal concept in nonlinear science. Am. J. Phys. 70, 655 (2002) CrossRefGoogle Scholar
  17. 17.
    Li, C., Chen, L., Aihara, K.: Synchronization of coupled nonidentical genetic oscillators. Phys. Biol. 3, 37–44 (2006) CrossRefGoogle Scholar
  18. 18.
    Li, C., Chen, L., Aihara, K.: Stochastic synchronization of genetic oscillator networks. BMC Syst. Biol. 1, 6 (2007) CrossRefGoogle Scholar
  19. 19.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Li, C., Chen, G.: Synchronization in general complex dynamical networks with coupling delays. Physica A: Stat. Mech. Appl. 343, 263–278 (2004) CrossRefGoogle Scholar
  21. 21.
    Cao, J.D., Lu, J.Q.: Adaptive synchronization of neural networks with or without time-varying delay. Chaos 16(1), 013133 (2006) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Jiang, Y.: Globally coupled maps with time delay interactions. Phys. Lett. A 267(5–6), 342–349 (2000) CrossRefGoogle Scholar
  23. 23.
    Masoller, C., Martı, A.C., Zanette, D.H.: Synchronization in an array of globally coupled maps with delayed interactions. Physica A: Stat. Mech. Appl. 325(1–2), 186–191 (2003) CrossRefMATHGoogle Scholar
  24. 24.
    Choi, M.Y., Kim, H.J., Kim, D., Hong, H.: Synchronization in a system of globally coupled oscillators with time delay. Phys. Rev. E 61(1), 371–381 (2000) CrossRefGoogle Scholar
  25. 25.
    Heil, T., Fischer, I., Elsässer, W., Mulet, J., Mirasso, C.R.: Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. Phys. Rev. Lett. 86(5), 795–798 (2001) CrossRefGoogle Scholar
  26. 26.
    Earl, M.G., Strogatz, S.H.: Synchronization in oscillator networks with delayed coupling: a stability criterion. Phys. Rev. E 67(3), 36204 (2003) CrossRefGoogle Scholar
  27. 27.
    Atay, F.M., Jost, J., Wende, A.: Delays, connection topology, and synchronization of coupled chaotic maps. Phys. Rev. Lett. 92(14), 144101 (2004) CrossRefGoogle Scholar
  28. 28.
    Wünsche, H.J., Bauer, S., Kreissl, J., Ushakov, O., Korneyev, N., Henneberger, F., Wille, E., Erzgräber, H., Peil, M., Elsäßer, W., et al.: Synchronization of delay-coupled oscillators: a study of semiconductor lasers. Phys. Rev. Lett. 94(16), 163901 (2005) CrossRefGoogle Scholar
  29. 29.
    Cao, J., Li, P., Wang, W.: Global synchronization in arrays of delayed neural networks with constant and delayed coupling. Phys. Lett. A 353(4), 318–325 (2006) CrossRefGoogle Scholar
  30. 30.
    Chen, M., Zhou, D.: Synchronization in uncertain complex networks. Chaos 16(1), 013101 (2006) CrossRefMathSciNetGoogle Scholar
  31. 31.
    Li, Z., Chen, G.: Robust adaptive synchronization of uncertain dynamical networks. Phys. Lett. A 324(2-3), 166–178 (2004) CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Hale, J.K.: Diffusive coupling, dissipation, and synchronization. J. Dyn. Differ. Equ. 9(1), 1–52 (1997) CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Wu, C.W.: Synchronization in Coupled Chaotic Circuits and Systems. World Scientific, Singapore (2002) MATHGoogle Scholar
  34. 34.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  35. 35.
    Leonov, G., Bunin, A., Koksch, N.: Attractor localization of the Lorenz system. Z. Angew. Math. Mech. 67(2), 649–656 (1987) CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of MathematicsSoutheast UniversityNanjingChina
  2. 2.Department of MathematicsCity University of Hong KongHong KongChina

Personalised recommendations