Advertisement

Nonlinear Dynamics

, Volume 53, Issue 1–2, pp 67–74 | Cite as

On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative

  • Dumitru Baleanu
  • Sami I. Muslih
  • Eqab M. Rabei
Original Paper

Abstract

Fractional mechanics describe both conservative and nonconservative systems. The fractional variational principles gained importance in studying the fractional mechanics and several versions are proposed. In classical mechanics, the equivalent Lagrangians play an important role because they admit the same Euler–Lagrange equations. By adding a total time derivative of a suitable function to a given classical Lagrangian or by multiplying with a constant, the Lagrangian we obtain are the same equations of motion. In this study, the fractional discrete Lagrangians which differs by a fractional derivative are analyzed within Riemann–Liouville fractional derivatives. As a consequence of applying this procedure, the classical results are reobtained as a special case.

The fractional generalization of Faà di Bruno formula is used in order to obtain the concrete expression of the fractional Lagrangians which differs from a given fractional Lagrangian by adding a fractional derivative. The fractional Euler–Lagrange and Hamilton equations corresponding to the obtained fractional Lagrangians are investigated, and two examples are analyzed in detail.

Keywords

Fractional Lagrangians Fractional calculus Fractional Riemann–Liouville derivative Fractional Euler–Lagrange equations Faà di Bruno formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach, Linghorne (1993) MATHGoogle Scholar
  2. 2.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) MATHGoogle Scholar
  3. 3.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) CrossRefMATHGoogle Scholar
  4. 4.
    Tenreiro Machado, J.A.: A probabilistic interpretation of the fractional-order differentiation. Frac. Calc. Appl. Anal. 8, 73–80 (2003) MathSciNetGoogle Scholar
  5. 5.
    Tenreiro Machado, J.A.: Discrete-time fractional-order controllers. Frac. Calc. Appl. Anal. 4, 47–66 (2001) MathSciNetMATHGoogle Scholar
  6. 6.
    Lorenzo, C.F., Hartley, T.T.: Fractional trigonometry and the spiral functions. Nonlinear Dyn. 38, 23–60 (2004) CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Agrawal, O.P.: Application of fractional derivatives in thermal analysis of disk brakes. Nonlinear Dyn. 38, 191–206 (2004) CrossRefMATHGoogle Scholar
  8. 8.
    Silva, M.F., Tenreiro Machado, J.A., Lopes, A.M.: Modelling and simulation of artificial locomotion systems. Robotica 23, 595–606 (2005) CrossRefGoogle Scholar
  9. 9.
    Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004) CrossRefMATHGoogle Scholar
  10. 10.
    Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997) Google Scholar
  11. 11.
    Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996) CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Mainardi, F., Pagnini, G., Gorenflo, R.: Mellin transform and subordination laws in fractional diffusion processes. Frac. Calc. Appl. Anal. 6(4), 441–459 (2003) MathSciNetMATHGoogle Scholar
  13. 13.
    Raspini, A.: Simple solutions of the fractional Dirac equation of order \(\frac{2}{3}\) . Phys. Scr. 64, 20–22 (2001) CrossRefMATHGoogle Scholar
  14. 14.
    Rabei, E., Alhalholy, T., Rousan, A.: Potential of arbitrary forces with fractional derivatives. Int. J. Theor. Phys. A 19(17–18), 3083–3096 (2004) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339–3352 (2004) CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Lim, S.C., Muniady, S.V.: Stochastic quantization of nonlocal fields. Phys. Lett. A 324, 396–405 (2004) CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Magin, R.L.: Fractional calculus in bioengineering. Critic. Rev. Biomed. Eng. 32(1), 1–104 (2004) CrossRefGoogle Scholar
  18. 18.
    Magin, R.L.: Fractional calculus in bioengineering, part 2. Critic. Rev. Biomed. Eng. 32(2), 105–193 (2004) CrossRefGoogle Scholar
  19. 19.
    Magin, R.L.: Fractional calculus in bioengineering, part 3. Critic. Rev. Biomed. Eng. 32(3/4), 194–377 (2004) Google Scholar
  20. 20.
    Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996) MathSciNetGoogle Scholar
  21. 21.
    Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997) MathSciNetGoogle Scholar
  22. 22.
    Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002) CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Klimek, M.: Fractional sequential mechanics-models with symmetric fractional derivatives. Czech. J. Phys. 51, 1348–1354 (2001) CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czech. J. Phys. 52, 1247–1253 (2002) CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Cresson, J.: Fractional embedding of differential operators and Lagrangian systems. Preprint (2006) Google Scholar
  26. 26.
    Baleanu, D., Muslih, S.: Lagrangian formulation of classical fields within Riemann–Liouville fractional derivatives. Phys. Scr. 72(2–3), 119–121 (2005) CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Muslih, S., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 304(3), 599–606 (2005) CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327(2), 891–897 (2007) CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Baleanu, D., Muslih, S.I.: Formulation of Hamiltonian equations for fractional variational problems. Czech. J. Phys. 55(6), 633–642 (2005) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Muslih, S., Baleanu, D., Rabei, E.: Hamiltonian formulation of classical fields within Riemann–Liouville. Phys. Scr. 73(6), 436–438 (2006) CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119, 73–79 (2004) Google Scholar
  32. 32.
    Baleanu, D.: Constrained systems and Riemann–Liouville fractional derivative. In: Proceedings of 1st IFAC Workshop on Fractional Differentiation and its Applications, Bordeaux, France, July 19–21, pp. 597–602 (2004) Google Scholar
  33. 33.
    Baleanu, D.: About fractional calculus of singular Lagrangians. In: Proceedings of IEEE International Conference on Computational Cybernetics ICCC, Wien, Austria, August 30–September 1, pp. 379–385 (2004) Google Scholar
  34. 34.
    Baleanu, D., Muslih, S.: New trends in fractional quantization method, 1st edn. Intelligent Systems at the Service of Mankind, vol. 2. U-Books, Augsburg (2005) Google Scholar
  35. 35.
    Baleanu, D.: Constrained systems and Riemann–Liouville fractional derivatives. In: Le Mehaute, A., Tenreiro Machado, J.A., Trigeassou, J.C., Sabatier, J. (eds.) Fractional Differentiation and Its Applications, pp. 69–80. U-Books, Augsburg (2005) Google Scholar
  36. 36.
    Baleanu, D., Muslih, S.I.: About fractional supersymmetric quantum mechanics. Czech. J. Phys. 55(9), 1063–1066 (2005) CrossRefMathSciNetGoogle Scholar
  37. 37.
    Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1993) Google Scholar
  38. 38.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Nauka, Moscow (1979) MATHGoogle Scholar
  39. 39.
    Hardy, G.H.: Riemann’s form of Taylor’s series. J. Lond. Math. Soc. 20, 48–57 (1954) CrossRefMathSciNetGoogle Scholar
  40. 40.
    Trujillo, J.J.: On a Riemann–Liouville generalized Taylor’s formula. J. Math. Anal. Appl. 231, 255–265 (1999) CrossRefMathSciNetMATHGoogle Scholar
  41. 41.
    Llosa, J., Vives, J.: Hamiltonian formalism for nonlocal Lagrangians. J. Math. Phys. 35, 2856–2877 (1994) CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    Gitman, D.M., Tytin, I.V.: Quantization of Fields with Constraints. Springer, Berlin (1990) MATHGoogle Scholar
  43. 43.
    Nesterenko, V.V.: Singular Lagrangians with higher derivatives. J. Phys. A: Math. Gen. 22, 1673–1687 (1989) CrossRefMathSciNetMATHGoogle Scholar
  44. 44.
    Bering, K.: A note of non-locality and Ostrogradski’s construction. Preprint hep-th/0007192 Google Scholar
  45. 45.
    Gomis, J., Kamimura, K., Llosa, J.: Hamiltonian formalism for space-time noncummutative theories. Phys. Rev. D 63, 045003 (2001) MathSciNetGoogle Scholar
  46. 46.
    Carathéodory, C.: Calculus of Variations and Partial Differential Equations of First Order, Part II. Holden-Day, Oackland (1967) MATHGoogle Scholar
  47. 47.
    Negri, L.J., da Silva Joseph, E.G.: s-equivalent Lagrangians in generalized mechanics. Phys. Rev. D 27, 2227–2232 (1986) Google Scholar
  48. 48.
    Santilli, M.: Foundations of Theoretical Mechanics I, II. Springer, New York (1977) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Dumitru Baleanu
    • 1
  • Sami I. Muslih
    • 2
    • 3
  • Eqab M. Rabei
    • 4
    • 5
  1. 1.Department of Mathematics and Computer Sciences, Faculty of Arts and SciencesÇankaya UniversityAnkaraTurkey
  2. 2.Department of PhysicsAl-Azhar UniversityGazaPalestine
  3. 3.International Center for Theoretical PhysicsTriesteItaly
  4. 4.Department of ScienceJerash Private UniversityJerashJordan
  5. 5.Department of PhysicsMutah UniversityKarakJordan

Personalised recommendations