Advertisement

Nonlinear Dynamics

, Volume 52, Issue 3, pp 227–248 | Cite as

Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics

  • Qinglei Hu
Original Paper

Abstract

This paper presents a dual-stage control system design method for the three-axis-rotational maneuver control and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In this design approach, the attitude control system and vibration suppression were designed separately using a lower order model. Based on the sliding mode control (SMC) theory, a discontinuous attitude control law in the form of the input voltage of the reaction wheel is derived to control the orientation of the spacecraft actuated by the reaction wheel, in which the reaction wheel dynamics is also considered from the real applications point of view. The asymptotic stability is shown using Lyapunov analysis. Furthermore, an adaptive version of the proposed attitude control law is also designed for adapting the unknown upper bounds of the lumped disturbance so that the limitation of knowing the bound of the disturbance in advance is released. In addition, the concept of varying the width of boundary layer instead of a fixed one is also employed to eliminate the chattering and improve the pointing precision as well. For actively suppressing the induced vibration, modal velocity feedback and strain rate feedback control methods are presented and compared by using piezoelectric materials as additional sensors and actuators bonded on the surface of the flexible appendages. Numerical simulations are performed to show that rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque and parameter uncertainty.

Keywords

Sliding mode control Flexible spacecraft Vibration control Attitude maneuver Actuator dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Drakunov, S.V., Utkin, V.I.: Sliding mode control in dynamic systems. Int. J. Control 55, 1029–1037 (1992) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Hung, J., Gao, W.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993) CrossRefGoogle Scholar
  3. 3.
    Vadali, S.R.: Variable structure control of spacecraft large attitude maneuvers. J. Guid. Control Dyn. 9(3), 235–239 (1986) MATHGoogle Scholar
  4. 4.
    Dwyer, T.A.W., Sira-Ramirez, H.: Variable structure control of spacecraft attitude maneuver. J. Guid. Control Dyn. 11(3), 262–270 (1988) MATHGoogle Scholar
  5. 5.
    Crassidis, J.L., Markley, F.L.: Sliding mode control using modified Rodrigues parameters. J. Guid. Control Dyn. 19(6), 1381–1383 (1996) MATHGoogle Scholar
  6. 6.
    Lo, S.C., Chen, Y.P.: Smooth Sliding mode control for spacecraft attitude tracking maneuvers. J. Guid. Control Dyn. 18(6), 1345–1349 (1995) MATHGoogle Scholar
  7. 7.
    Chen, Y.P., Lo, S.C.: Sliding mode controller design for spacecraft attitude tracking maneuvers. IEEE Trans. Aerosp. Electron. 29(4), 1328–1333 (1993) CrossRefGoogle Scholar
  8. 8.
    Hu, Q.L., Ma, G.F.: Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerosp. Sci. Technol. 9, 307–317 (2005) CrossRefGoogle Scholar
  9. 9.
    Hu, Q.L., Ma, G.F.: Vibration suppression of flexible spacecraft during attitude maneuvers. J. Guid. Control Dyn. 28(2), 377–380 (2005) CrossRefGoogle Scholar
  10. 10.
    Hu, Q.L., Ma, G.F.: Spacecraft vibration suppression using variable structure output feedback control and smart materials. ASME J. Vib. Acoust. 128(2), 221–230 (2006) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hu, Q.L., Ma, G.F.: Optimal sliding mode maneuvering control and active vibration reduction of flexible spacecraft. In: Proceedings of the Institution of Mechanical Engineers, J. Aerosp. Eng. 220(4), 317–335 (2006) Google Scholar
  12. 12.
    Zeng, Y., Araujo, A.D., Singh, S.N.: Output feedback variable structure adaptive control of a flexible spacecraft. Acta Astronaut. 44(1), 11–22 (1999) CrossRefGoogle Scholar
  13. 13.
    Iyer, A., Singh, S.N.: Variable structure slewing control and vibration damping of flexible spacecraft. Acta Astronaut. 25(1), 1–9 (1991) CrossRefGoogle Scholar
  14. 14.
    Singh, S.N.: Variable structure slewing control and vibration damping of flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. 23, 380–387 (1987) CrossRefGoogle Scholar
  15. 15.
    Oz, H., Mostafa, O.: Variable structure control systems (VSCS) maneuvering of flexible spacecraft. J. Astronaut. Sci. 36(3), 311–344 (1988) Google Scholar
  16. 16.
    Hu, Q.L., Ma, G.F.: Control of three-axis stabilized flexible spacecrafts using variable structure strategies subject to input nonlinearities. SAGE J. Vib. Control 12(6), 659–681 (2006) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Crassidis, J.L., Vadali, S.R., Markley, F.L.: Optimal variable structure control tracking of spacecraft maneuvers. J. Guid. Control Dyn. 23(3), 564–566 (2000) Google Scholar
  18. 18.
    Cheon, Y.J.: Sliding mode control of spacecraft with actuator dynamics. Trans. Control Autom. Syst. Eng. 4(2), 169–175 (2002) MathSciNetGoogle Scholar
  19. 19.
    Hanagud, S., Won, C.C., Obal, M.W.: Optimal placement of piezoelectric sensors and actuators. Am. Control Conf. 3, 1884–1889 (1988) Google Scholar
  20. 20.
    Lim, K.B.: Method for optimal actuator and sensor placement for large flexible structures. J. Guid. Control Dyn. 15(1), 49–57 (1992) Google Scholar
  21. 21.
    Newman, S.M.: Active damping control of a flexible space structure using piezoelectric sensors and actuators. Master thesis, US Naval Postgraduate School (1992) Google Scholar
  22. 22.
    Song, G., Kotejoshyer, B.: Vibration reduction of flexible structures during slew operations. Int. J. Acoust. Vib. 7(2), 105–109 (2002) Google Scholar
  23. 23.
    Bailey, T., Hubbard, J.E.: Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8(5), 605–611 (1985) MATHCrossRefGoogle Scholar
  24. 24.
    Tzou, H.S.: Piezpelectric Shells-Distributed Sensing and Control of Continua. Kluwer Academic, London (1993) Google Scholar
  25. 25.
    Won, C.C., Sulla, J.L., Sparks, D.W., Belvin, W.K.: Application of piezoelectric devices to vibration suppression. J. Guid. Control Dyn. 17(6), 1333–1338 (1994) Google Scholar
  26. 26.
    Di Gennaro, S.: Output stabilization of flexible spacecraft with active vibration suppression. IEEE Trans. Aerosp. Electron. Syst. 39(3), 747–759 (2003) CrossRefGoogle Scholar
  27. 27.
    Popov, V.M.: Hyperstability of Control System. Springer, Berlin (1973) Google Scholar
  28. 28.
    Fung, R.F., Yang, R.T.: Application of VSC in position control of a nonlinear lector hydraulic velocity servo systems. Comput. Struct. 66(4), 365–372 (1998) MATHCrossRefGoogle Scholar
  29. 29.
    Hwang, C.L.: Sliding mode control using time-varying switching gain and boundary layer for electrohydraulic position and differential pressure control. IEE Proc. Control Theory Appl. 143(4), 325–333 (1996) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Control Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations