Advertisement

Nonlinear Dynamics

, Volume 52, Issue 1–2, pp 159–179 | Cite as

Deployment/retrieval optimization for flexible tethered satellite systems

  • Paul Williams
Original Paper

Abstract

A methodology for deployment/retrieval optimization of tethered satellite systems is presented. Previous research has focused on the case where the tether is modeled as an inelastic, straight rod for the determination of optimal system trajectories. However, the tether shape and string vibrations can often be very important, particularly when the deployment/retrieval speed changes rapidly, or when external forces such as aerodynamic drag or electrodynamic forces are present. An efficient mathematical model for flexible tethered systems is first derived, which treats the tether as composed of a system of lumped masses connected via inelastic links. A tension control law is presented based on a discretization of the tether length dynamics via Chebyshev polynomials. A scheme that minimizes the second derivative of length over the trajectory based on physically meaningful coefficients is presented. This is utilized in conjunction with evolutionary optimization methods to minimize the rigid body and flexible modes of the system during deployment/retrieval. It is shown that only a very small number of parameters are required to generate accurate trajectories. The results are compared to the case where the tether is modeled as a straight rod.

Keywords

Tethered satellites Deployment/retrieval Optimal control Flexible systems Evolutionary control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Misra, A.K., Modi, V.J.: A survey on the dynamics and control of tethered satellite systems. Adv. Astronaut. Sci. 62, 667–719 (1987) Google Scholar
  2. 2.
    Fujii, H.A., Anazawa, S.: Deployment/retrieval control of tethered subsatellite through an optimal path. J. Guid. Control Dyn. 17, 1292–1298 (1994) Google Scholar
  3. 3.
    Barkow, B., Steindl, A., Troger, H., Wiedermann, G.: Various methods of controlling the deployment of a tethered satellite. J. Vib. Control 9, 187–208 (2003) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Lakso, J., Coverstone, V.L.: Optimal tether deployment/retrieval trajectories using direct collocation. In: AIAA/AAS Astrodynamics Specialist Conference, 14–17 August 2000. AIAA Paper 2000-4349 (2000) Google Scholar
  5. 5.
    Williams, P., Trivailo, P.: On the optimal deployment and retrieval of tethered satellites. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson, AZ, July 2005. AIAA Paper 2005-4291 (2005) Google Scholar
  6. 6.
    Lorenzini, E.C., Bortolami, S.B., Rupp, C.C., Angrilli, F.: Control and flight performance of tethered satellite small expendable deployment system-II. J. Guid. Control Dyn. 19, 1148–1156 (1996) MATHGoogle Scholar
  7. 7.
    Carroll, J.A.: SEDS deployer design and flight performance. In: AIAA Space Programs and Technologies Conference and Exhibit, Huntsville, AL, September 1993. AIAA Paper 93-4764 (1993) Google Scholar
  8. 8.
    Williams, P., Blanksby, C., Trivailo, P., Fujii, H.A.: Receding horizon control of tether system using quasilinearisation and Chebyshev pseudospectral approximations. In: AAS/AIAA Astrodynamics Specialists Conference, Big Sky, MT, 3–7 August 2003. Paper AAS 03-535 (2003) Google Scholar
  9. 9.
    Williams, P., Blanksby, C., Trivailo, P.: Optimisation of tether assisted sample return from the international space station. In: Australian International Aerospace Congress, Brisbane, Australia, 29 July–1 August 2003. Paper AIAC 2003-021 (2003) Google Scholar
  10. 10.
    Misra, A.K., Modi, V.J.: Deployment and retrieval of shuttle supported tethered satellites. J. Guid. Control Dyn. 5, 278–285 (1982) MATHGoogle Scholar
  11. 11.
    Fujii, H., Ishijima, S.: Mission function control for deployment and retrieval of a subsatellite. J. Guid. Control Dyn. 12, 243–247 (1989) Google Scholar
  12. 12.
    Fujii, H., Uchiyama, K., Kokubun, K.: Mission function control of tethered subsatellite deployment/retrieval: in-plane and out-of-plane motion. J. Guid. Control Dyn. 14, 471–473 (1991) Google Scholar
  13. 13.
    Vadali, S.R., Kim, E.S.: Feedback control of tethered satellites using Lyapunov stability theory. J. Guid. Control Dyn. 14, 729–735 (1991) CrossRefGoogle Scholar
  14. 14.
    Bainum, P.M., Kumar, V.K.: Optimal control of the shuttle-tethered-subsatellite system. Acta Astronaut. 7, 1333–1348 (1980) MATHCrossRefGoogle Scholar
  15. 15.
    Koakutsu, H., Nakajima, A., Ota, S., Nakasuka, S.: Tension control of micro tether system on circular orbit considering tether flexibility. J. Space Technol. Sci. 12, 1–13 (1996) Google Scholar
  16. 16.
    Zimmerman, F., Schottle, U.M., Messerschmid, E.: Optimal deployment and return trajectories for a tether-assisted re-entry mission. In: AIAA Atmospheric Flight Mechanics Conference, Portland, OR, August 1999. AIAA Paper 99-4168 (1999) Google Scholar
  17. 17.
    Williams, P., Hyslop, A., Stelzer, M., Kruijff, M.: YES2 optimal trajectories in presence of eccentricity and aerodynamic drag. In: International Astronautical Congress, Valencia, Spain, October 2006 Google Scholar
  18. 18.
    Crellin, E.B., Janssens, F., Poelaert, D., Steiner, W., Troger, H.: On balance and variational formulations of the equations of motion of a body deploying along a cable. J. Appl. Mech. 64, 369–374 (1997) MATHCrossRefGoogle Scholar
  19. 19.
    Wiedermann, G., Schagerl, M., Steindl, A., Troger, H.: Simulation of deployment and retrieval processes in a tethered satellite system mission. In: International Astronautical Congress, Amsterdam, The Netherlands, October 1999 Google Scholar
  20. 20.
    Xu, D.M., Misra, A.K., Modi, V.J.: Thruster-augmented active control of a tethered subsatellite system during its retrieval. J. Guid. Control Dyn. 9, 663–672 (1986) Google Scholar
  21. 21.
    Kim, E., Vadali, S.R.: Modeling issues related to retrieval of flexible tethered satellite systems. J. Guid. Control Dyn. 18, 1169–1176 (1995) Google Scholar
  22. 22.
    Ross, I.M.: A roadmap for optimal control: the right way to commute. Ann. New York Acad. Sci. 1065, 210–231 (2005) CrossRefGoogle Scholar
  23. 23.
    Elnagar, G., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40, 1793–1796 (1995) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Ross, I.M., Fahroo, F.: Legendre pseudospectral approximations of optimal control problems. Lect. Notes Control Inf. Sci. 295, 327–342 (2003) MathSciNetGoogle Scholar
  25. 25.
    Williams, P.: User’s guide to DIRECT version 1.17. Technical Report, Melbourne, Australia, April 2005 Google Scholar
  26. 26.
    Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12, 979–1006 (2002) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. Advances in Control and Design Series. SIAM, Philadelphia (2001) MATHGoogle Scholar
  28. 28.
    Ingber, A.L.: Adaptive simulated annealing (ASA): lessons learned. Control Cybern. 25, 33–54 (1996) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Balwyn NorthAustralia

Personalised recommendations