Nonlinear Dynamics

, Volume 51, Issue 3, pp 379–398 | Cite as

On some nonlinear nonisotropic quasi-self-similar functions

Original Paper


Nonlinear nonisotropic quasi-self-similar functions are important because of their relation with many physical phenomena such as fully developed turbulence or diffusion limited aggregates. Such functions are superpositions of “similar" structures at different scales, reminiscent of some modelization of turbulence. In this paper we continue to study such a class of functions. We extend our results in [Ben Mabrouk. A., Far East J. Dynam. Syst. 7(1), 23–63 (2005)] to some nonlinear cases and where some separation condition is not satisfied.

Wavelets Quasi-self-similarity Multifractal analysis Regularity Multifractal formalism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antoine, J.P., Vandergheynst, P.: Wavelets on the n-sphere and related manifolds. J. Math. Phys. 39(8), 3987–4008 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Antoine, J.P., Vandergheynst, P.: Wavelets on the 2-sphere: a group-theoretical approach, Appl. Comp. Harmonic Anal. 7, 262–291 (1999)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arneodo, A., Bacry, E., Muzy, J.F.: Random cascades on wavelet dyadic trees. J. Math. Phys. 39(8), 4142–4164 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ben Mabrouk, A.: Spectre Multifractal de Mesure. Faculté des Sciences de Monastir. Mémoire de DEA (1998)Google Scholar
  5. 5.
    Ben Mabrouk, A.: Multifractal analysis of some nonisotropic quasi-self-similar functions. Far East J. Dynam. Syst. 7(1), 23–63 (2005)MATHMathSciNetGoogle Scholar
  6. 6.
    Ben Mabrouk, A.: Wavelet analysis of some nonisotropic quasi-self-similar functions. Thesis in Mathematics, Faculty of Sciences, Monastir (2005)Google Scholar
  7. 7.
    Brown, G., Michon, G., Peyrière, J.: On the multifractal analysis of measures. J. Stat. Phys. 66, 775–779 (1992)MATHCrossRefGoogle Scholar
  8. 8.
    Frisch, U., Parisi, G.: Fully developed turbulence and intermittency. In: Proceedings of the International Summer School of Physics Enrico Fermi, North Holland, pp. 84–88 (1985)Google Scholar
  9. 9.
    Hunt, B.R., Kaloshin, V.Y.: How projections affect the dimension spectrum of fractal measures. Nonlinearity 10, 1031–1046 (1997)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jaffard, S.: Multifractal formalism for functions. Part 2: selfsimilar functions. SIAM J. Math. Anal. 28(4), 971–998 (1997)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mauroy, B.: Hydrodynamique dans le poumon. Relations entre flux et geometrie. (In French). Thesis in Mathematics, Ecole normale supérieure de Cachan (2004)Google Scholar
  12. 12.
    Pesin, Y.B.: Dimension Theory in Dynamical Systems, Contemporary views and Applications. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1996)Google Scholar
  13. 13.
    Soares, J.V.B., Leandro, J.J.G., Cesar-Jr, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Morlet wavelet and supervised classification. IEEE Trans. Med. Imag. 25(9), 1214–1222 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Computational Mathematics Laboratory, Department of Mathematics, Faculty of SciencesMonastirTunisia

Personalised recommendations