Skip to main content
Log in

Dynamical properties of 2-torus parabolic maps

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a class of linear maps on the 2-torus are discussed. Discussions are focused on the case that the maps are parabolic. It is shown that the maximal invariant set for a 2-torus parabolic map is indeed invariant, and is almost closed, and the Lebesgue measure restricted to a maximal invariant set is invariant. Under this invariant measure, all Lyapunov exponents of a parabolic map are zero. In certain simple cases, the Lebesgue measure of the maximal invariant sets are computed and estimated. For the case the maps are invertible, it is shown that the inverse of a non-horocyclic parabolic map is no longer a parabolic map. Interesting properties of the conjugation of invertible parabolic maps by automorphisms of the torus are characterized, and a conjugation invariant for such maps are obtained. And it is proven that all these maps can be reduced to a family of one parameter rigid rotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R.L.: Symbolic dynamics and Markov partitions. MSRI Publications 53 (1996). Also in Bulletin of the Am. Math. Soc. (New Series), 35, 1–56 (1998)

  2. Adler, R.L., Tresser, C., Worfolk, P.A.: Topological conjugacy of linear endomorphisms of the 2-torus. Trans. Am. Math. Soc. 349, 1633–1652 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Akin, E.: The general topology of dynamical systems. Am. Math. Soc. 94, 272–281 (1993)

    Google Scholar 

  4. Amadasi, L., Casartelli, M.: Basins of periodic orbits for elliptic maps of the torus. J. Stat. Phys. 65, 363–372 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ashwin, P.: Non-smooth invariant circles in digital overflow oscillations. In: Proceedings of the 4th International Workshop on Nonlinear Dynamics of Electronic Systems, Sevilla, pp. 417–422 (1996)

  6. Ashwin, P.: Elliptic behaviour in the sawtooth standard map. Phys. Lett. A 232, 409–416 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ashwin, P., Chambers, W., Petkov, G.: Lossless digital filter overflow oscillations; approximation of invariant fractals. Int. J. Bif. Chaos 7, 2603–2610 (1997)

    Article  MATH  Google Scholar 

  8. Ashwin, P., Fu, X.C.: On the dynamics of some nonhyperbolic area-preserving piecewise linear maps. In: Mathematics in Signal Processing V, Proceedings of the Fifth IMA Conference on Mathematics in Signal Processing, McWhirter, J.G., Proudler I.K. (Eds.), Oxford University Press IMA Conference Series, pp. 137–145 (2002)

  9. Ashwin, P., Fu, X.C.: Tangencies in invariant circle packings for certain planar piecewise isometries are rare. Dyn. Syst. 16, 333–345 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ashwin, P., Fu, X.C., Deane, J.H.B.: Properties of the invariant disk packing in a model bandpass sigma-delta modulator. Int. J. Bif. Chaos 13, 631–641 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ashwin, P., Fu, X.C., Nishskawa, T., Zyczkowski, K.: Invariant sets for discontinuous parabolic maps of the torus. Nonlinearity 13, 818–835 (2000)

    Article  Google Scholar 

  12. Ashwin, P., Fu, X.C., Terry, J.R.: Riddling and invariance for discontinuous maps preserving Lebesgue measure. Nonlinearity 15, 633–645 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ashwin, P., Terry, J.R.: On riddling and weak attractors. Physica D 142, 87–100 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Berry, M.V.: Regular and irregular motion. In: Jorna, S. (Ed.), Topics in nonlinear dynamics. Am. Inst. Phys. Conf. Proc. 46, 16–120 (1978). Also in MacKay, R.S., Meiss, J.D. (Eds.), Hamiltonian dynamical systems: A reprint selection, Adam Hilger, Bristol, pp. 27–53 (1987)

    MathSciNet  Google Scholar 

  15. Boshernitzan, M., Kornfeld, I.: Interval translation mappings. Ergodic Theor. Dyn. Syst. 15, 821–832 (1995)

    MATH  MathSciNet  Google Scholar 

  16. Chua, L.O., Lin, T.: Chaos in digital filters. IEEE Trans. Circuits Syst. 35, 648–658 (1988)

    Article  MathSciNet  Google Scholar 

  17. Chua, L., Lin, T.: Fractal pattern of second-order non-linear digital filters: a new symbolic analysis. Int. J. Circuit Theor. Appl. 18, 541–550 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fu, X.C., Ashwin, P.: Symbolic analysis for some planar piecewise linear maps. Discrete Continuous Dyn. Syst. 9, 1533–1548 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Fu, X.C., Lu, W., Ashwin, P., Duan, J.: Symbolic representations of iterated maps. Topological Methods Nonlinear Anal. 18, 119–148 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Goetz, A.: Perturbation of 8-attractors and births of satellite systems. Int. J. Bif. Chaos 8, 1937–1956 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Goetz, A.: Dynamics of a piecewise rotation. Discrete Continuous Dyn. Syst. 4, 593–608 (1998)

    MATH  MathSciNet  Google Scholar 

  22. Goetz, A.: Sofic subshifts and piecewise isometric systems. Ergodic Theor. Dyn. Syst. 19, 1485–1501 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Goetz, A., Mendes, M.: Piecewise rotations: bifurcations, attractors and symmetries. In: Proceedings of the Conference in Bifurcation, Symmetry and Patterns, Porto, Portugal, Birhauser Verlag, pp. 157–165 (2000)

    Google Scholar 

  24. Katok, A.: Interval exchange transformations and some special flows are not mixing. Isr. J. Math. 35, 301–310 (1980)

    MATH  MathSciNet  Google Scholar 

  25. Keane, M.: Interval exchange transformations. Mathemat. Zeit. 141, 25–31 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kocarev, L., Wu, C.W., Chua, L.O.: Complex behaviour in digital filters with overflow nonlinearity: analytical results. IEEE Trans. Circuits Syst.-II, 43, 234–246 (1996)

    Article  Google Scholar 

  27. Mendes, M.: Ph.D. thesis, University of Surrey (2001)

  28. Mendes, M.: Quasi-invariant attractors of piecewise isometric systems. Discrete Continuous Dyn. Syst. 9, 323–338 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  30. Schmeling, J., Troubetzkoy, S.: Interval translation mappings. In: Dynamical Systems, From Crystals to Chaos. Marseille, World Scientific Publishers, Singapore (1998)

  31. Vaienti, S.: Ergodic properties of the discontinuous sawtooth map. J. Stat. Phys. 67, 251–269 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Veech, W.A.: Interval exchange transformations. J. Anal. Math. 33, 222–272 (1978)

    MATH  MathSciNet  Google Scholar 

  33. Vivaldi, F., Shaidenko, A.V.: Global stability of a class of discontinuous dual billiards. Commun. Math. Phys. 110, 625–640 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  34. Walters, P.: An Introduction to Ergodic Theory. Springer-Verlag, New York (1982)

    MATH  Google Scholar 

  35. Zyczkowski, K., Nishikawa, T.: Linear parabolic maps on the torus. Phys. Lett. A259, 377–386 (1999)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Chu Fu.

Additional information

Mathematics Subject Classification: 37C15, 37D50

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, XC., Chen, FY. & Zhao, XH. Dynamical properties of 2-torus parabolic maps. Nonlinear Dyn 50, 539–549 (2007). https://doi.org/10.1007/s11071-006-9179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9179-9

Keywords

Navigation