Nonlinear Dynamics

, Volume 50, Issue 3, pp 597–608 | Cite as

Rigid body impact with moment of rolling friction

  • Dan B. Marghitu
  • Eleonor D. Stoenescu
Original Paper


In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction.


Impact with friction Coefficient of rolling friction Coefficient of restitution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)Google Scholar
  2. 2.
    Keller, J.B.: Impact with friction. ASME J. Appl. Mech. 53, 1–4 (1986)zbMATHCrossRefGoogle Scholar
  3. 3.
    Stronge, W.J.: Rigid body collisions with friction. Proc. R. Soc., A 431, 169–181 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Stronge, W.J.: Swerve during three-dimensional impact of rough rigid bodies. ASME J. Appl. Mech. 61, 605–611 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Brach, R.M.: Rigid body collisions. ASME J. Appl. Mech. 56, 133–138 (1960)CrossRefGoogle Scholar
  6. 6.
    Brach, R.M.: Mechanical Impact Dynamics. Wiley, New York (1991)Google Scholar
  7. 7.
    Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge, U.K. (1904)zbMATHGoogle Scholar
  8. 8.
    Brach, R.M., Dunn, P.F.: Macrodynamics of microparticles. J. Aerosol Sci. Tech. 23, 51–71 (1995)CrossRefGoogle Scholar
  9. 9.
    Coaplen, J., Stronge, W.J., Ravani, B.: Work equivalent composite coefficient of restitution. Int. J. Impact Eng. 30, 581–591 (2004)CrossRefGoogle Scholar
  10. 10.
    Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)zbMATHGoogle Scholar
  11. 11.
    Marghitu, D.B., Hurmuzlu, Y.: Three dimensional rigid body collisions with multiple contact points. ASME J. Appl. Mech. 62, 725–732 (1995)zbMATHCrossRefGoogle Scholar
  12. 12.
    Marghitu, D.B., Hurmuzlu, Y.: Nonlinear dynamics of an elastic rod with frictional impact. Nonlinear Dyn. 10, 187–201 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Ceanga, V., Hurmuzlu, Y.: A new look at an old problem: Newton’s cradle. ASME J. Appl. Mech. 68, 575–583 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Lenci, S., Demeio, L., Petrini, M.: Response scenario and nonsmooth features in the nonlinear dynamics of an impacting inverted pendulum. ASME J. Comput. Nonlinear Dyn. 1, 56–64 (2006)CrossRefGoogle Scholar
  15. 15.
    Chatterjee, A., Ruina, A.: A new algebraic rigid body collision law based on impulse space considerations. ASME J. Appl. Mech. 65, 939–951 (1998)CrossRefGoogle Scholar
  16. 16.
    Chatterjee, A., Ruina, A.: Two interpretations of rigidity in rigid body collisions. ASME J. Appl. Mech. 65, 894–900 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentAuburn UniversityAuburnUSA

Personalised recommendations