Nonlinear Dynamics

, Volume 50, Issue 1–2, pp 191–211 | Cite as

Reynolds’ dream?

Original Article


For many non-linear phenomena, it is necessary to solve infinite systems of equations for correlation functions with a wide range of parameters. This paper can be seen as a first step in addressing this problem. Correlation functions related to the ϕ3 and to the ϕ4 field theories are described by means of generating Fock space vectors constructed with the help of Cuntz algebra. The equations obtained are easily transformed and general solutions are constructed. Various expansions of these solutions are developed using the explicitly constructed right inverse operators related to linear and non-linear parts of the theory. Based on the idea of information loss and using the language of classical mechanics, a solution to the closure problem for correlation functions is proposed. The method described in this paper can be used to obtain approximated correlation functions with strong and weak non-linearity.


Closure problem Cuntz relations Ideal constraints D’Alembert principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Accardi, L., Aref'eva, I.Ya., Volovich, I.V.: Non-Equilibrium Quantum Field Theory and Entangled Commutation Relations. ArXiv:hep-th/9905035 v1 (5 May 1999)Google Scholar
  2. 2.
    Achenbach, J.E.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam London (1973)MATHGoogle Scholar
  3. 3.
    Anselmi, D.: A New Perspective on the Philosophical Implications of Quantum Field Theory. Internet (1998)Google Scholar
  4. 4.
    Berry, H., Perez, D.G., Temam, O.: Chaos in Computer Performance. ArXiv:nlin.AO/0506030 v1 (13 June 2005)Google Scholar
  5. 5.
    Bożejko, M., Speicher, R.: An Example of a Generalized Brownian Motion. Preprint of University of Wroclaw, Nr. 599 (November 1990)Google Scholar
  6. 6.
    Dirac, P.A.M.: The Principles of Quantum Mechanics. Belfer Graduate School of Science, Yeshiva University, New York (1964)Google Scholar
  7. 7.
    Dreyer, W., Kunik, M.: Cold, Thermal and Oscillator Closure of the Atomic Chain. Preprint ISSN 0946-8633, No. 489. Berlin (1999)Google Scholar
  8. 8.
    Dunca, M., Epshteyn, Y.: On the Adams-Stolz Deconvolution LES Models. Internet; Google (2004)Google Scholar
  9. 9.
    Esquivel-Avila, J.A.: The dynamics of a nonlinear wave equation. J. Math. Anal. Appl. 279, 135–150 (2003). Available at: MATHCrossRefGoogle Scholar
  10. 10.
    Faith, C.: Algebra: Rings, Modules and Categories I. Springer-Verlag, Berlin, New York (1970)Google Scholar
  11. 11.
    Fried, E.: An Elementary Introduction to the Abstract Algebra. MIR Publishers, Moscow (1979) (in Russian)Google Scholar
  12. 12.
    Frost, W., Moulden, T.H. (eds.): Handbook of Turbulence, vol. 1. Plenum Press, New York, London (1977)Google Scholar
  13. 13.
    Gad-el-hak, M.: Fluid mechanics from the beginning to the third millennium. Int. J. Eng. Ed. 14(3), 177–185 (1998)Google Scholar
  14. 14.
    Gantmacher, F.R.: Lectures on Analytical Mechanics. Science Publishers, Moscow (1966) (in Russian)Google Scholar
  15. 15.
    Goldstein, H.: Classical Mechanics. Science Publishers, Moscow (1975) (in Russian)MATHGoogle Scholar
  16. 16.
    Greenberg, O.W.: Theories of violation of statistics. ArXiv:hep-th/0007054 v2 (13 July 2000)Google Scholar
  17. 17.
    Hańćkowiak, J.: Quasilocal terms in the functional formulation of the S-matrix theory. Acta Phys. Polon. 33, 711 (1968)Google Scholar
  18. 18.
    Hańćkowiak, J.: In search of physical solutions in quantum and statistical field theory. J. Math. Phys. 33, 1132–1140 (1992a)CrossRefGoogle Scholar
  19. 19.
    Hańćkowiak, J.: In search of physical solutions in quantum field theory. Fortschr. Phys. 40(6), 593–614 (1992b)CrossRefGoogle Scholar
  20. 20.
    Hańćkowiak, J.: The constraint analysis of coupled equations for n-point functions. Rep. Math. Phys. 33(1/2), (1993)Google Scholar
  21. 21.
    Harville, E.A.: Matrix Algebra from a Statistician's Perspective. Springer, Berlin Heidelberg, New York (2000)Google Scholar
  22. 22.
    Kempf, A.: Unsharp Degrees of Freedom and the Generating of Symmetries. ArXiv:hep-th/9907160 v1 (19 July 1999)Google Scholar
  23. 23.
    Kolokoltsov, V.N., Maslov, V.P.: Idempotent Analysis and Applications. Kluwer, Dordrecht (1997)MATHGoogle Scholar
  24. 24.
    Kozyrev, S.V.: The Space of Free Coherent States is Isomorphic to the Space of Distributions on P-Adic Numbers. ArXiv:q-alg/9706020 v1 (17 June 1997)Google Scholar
  25. 25.
    Kraichnan, R.H., Lewis, R.M.: A space-time functional formalism for turbulence. Comm. Comm. Pure Appl. Math. 15, 397–411 (1962)Google Scholar
  26. 26.
    Kreimer, D.: On the Hopf Algebra of Perturbative Quantum Field Theories. ArXiv:q-alg/9707029 v4 (15 January 1998)Google Scholar
  27. 27.
    Landau, L., Lifshic, E.: Hydrodynamics. Science Publishers, Moscow (1988)Google Scholar
  28. 28.
    Layton, W., Lewandowski, R.: An Exposition on the Time-Averaged Accuracy of Approximate De-convolution, Large Eddy Simulation Models of Turbulence. Internet (2004)Google Scholar
  29. 29.
    Marcinek,W.:On Generalized Statistics and Interactions. In: Coherent States, Quantization and Gravity, Schlichenmaier, M., Strasburger, A., Twareque Ali, S., Odziejewich, A. (eds.) Publishers of Warsaw University (2001)Google Scholar
  30. 30.
    Maurin, K.: Analysis, Part 1. PWN-Polish Scientific Publishers, Warsaw and D. Reidel Publishing Company, Dordrecht, Holland/Boston, USA (1976)Google Scholar
  31. 31.
    Monin, A.S., Jaglom, A.M.: Statistical Hydromechanics, vol. 2. MIR Publishers, Moscow (1967)Google Scholar
  32. 32.
    Musser, G.: Was Einstein Right? Scientific American (September 2004)Google Scholar
  33. 33.
    Na, T.Y.: Computational Methods in Engineering Boundary Value Problems. Academic Press, New York, San Francisco (1979)MATHGoogle Scholar
  34. 34.
    Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)MATHGoogle Scholar
  35. 35.
    Nusse, H.E., Yorke, J.A.: Dynamics: Numerical Explorations. Springer-Verlag, New York (1997)Google Scholar
  36. 36.
    Pang, T.: Computational Physics. Cambridge University Press, Cambridge (1997)Google Scholar
  37. 37.
    Penrose, R.: Shadows of the Mind. A Search for the Missing Science of Consciousness. Oxford University Press (1994)Google Scholar
  38. 38.
    Pogorzelec, A.: Initial value problems with ill-determined linear systems with right invertible operators. Demonstrat. Math. 16, 407–420 (1983)MATHGoogle Scholar
  39. 39.
    Polyanin, A.E., Zaitsev, V.F.: Exact Solutions for Ordinary Eifferential Equations. CRC Press, Boca Raton, Tokyo (2000)Google Scholar
  40. 40.
    Przeworska-Rolewicz, E.: Introduction to Algebraic Analysis. PWN Publishers, Warsaw (1988)Google Scholar
  41. 41.
    Rizzi, S.A., Muravyov, A.A.: Equivalent Linearization Analysis of Geometrically Nonlinear Random Vibrations Using Commercial Finite Element Codes. NASA/TP-2002-211761 (Internet) (2002)Google Scholar
  42. 42.
    Roache, P.J.: Computational Fluid Dynamics. Hermosa Publishers, Albuqerque (1976)Google Scholar
  43. 43.
    Rzewuski, J.: Field Theory. Part II. Iliffe Books LTE., London (1969)Google Scholar
  44. 44.
    Schulz, S.: Four Lectures on Differential-Algebraic Equations. Humbolt Universität zu Berlin (Internet) (2003)Google Scholar
  45. 45.
    Socha, L.: Equations for Moments in Stochastical Dynamical Systems. PWN Publishers, Warsaw (1993) (in Polish)Google Scholar
  46. 46.
    Spindler, K.: Abstract Algebra with Applications, vol. 1. Marcel Dekker, New York, Basel, Hong Kong (1994)Google Scholar
  47. 47.
    't Hooft, G.: On Peculiarities and Pit Falls in Path Integrals. ArXiv:hep-th/0208054 v1 (7 August 2002a)Google Scholar
  48. 48.
    't Hooft, G.: Determinism Beneath Quantum Mechanics. ArXiv:quant-ph/0212095 v1 (16 December 2002b)Google Scholar
  49. 49.
    Vasiliev, F.P.: Numerical Methods of Solutions of Extreme Problems. Science Publishers, Moscow (1980) (in Russian)Google Scholar
  50. 50.
    Vasiliev, A.H.: Functional Methods in Quantum Field Theory and Statistic. Leningrad University, Leningrad (1976)Google Scholar
  51. 51.
    Weinzierl, S.: Algebraic Algorithms in Perturbative Calculations. ArXiv:hep-th/0305260 v1 (30 May 2003)Google Scholar
  52. 52.
    Wal, A., Kuźma, M. (eds.): Hidden Symmetry of Physical Structures, Recipe of Weyel. Pedagogical University of Rzeszów (1997)Google Scholar
  53. 53.
    Weinberg, S.: The Quantum Theory of Fields. The Press Syndicate of the University of Cambridge (1996)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Zielona Góra. ul. Podgórna 50Zielona GóraPoland

Personalised recommendations