Nonlinear Dynamics

, Volume 50, Issue 1–2, pp 27–35 | Cite as

Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt

Original Article


In this paper, we prove in general that the homotopy perturbation method (HPM) proposed in 1998 is only a special case of the homotopy analysis method (HAM) profound in 1992 when ħ = −1. Besides, by using the thin film flows of Sisko and Oldroyd 6-constant fluids on a moving belt as examples, we show that the solutions given by HPM (Siddiqui, A.M., Ahmed, M., Ghori, Q.K.: Chaos Solitons and Fractals (2006) in press) are divergent, and thus useless. However, by choosing a proper value of the auxiliary parameter ħ, we give convergent series solution by means of the HAM. These two examples also show that, different from the HPM and other traditional analytic techniques, the HAM indeed provides us with a simple way to ensure the convergence of the solution.


Sisko fluid Oldroyd 6-constant fluid Thin film flow HAM solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhaosheng, Y., Jianzhong, L.: Numerical research on the coherent structure in the viscoelastic second order mixing layers. Appl. Math. Mech. 19, 671–677 (1998)CrossRefGoogle Scholar
  2. 2.
    Fetecau, C., Fetecau, C.: The Raleigh-Stokes problem for a fluid of Maxwellian type. Int. J. Non-Linear Mech. 38, 603–607 (2003)MATHCrossRefGoogle Scholar
  3. 3.
    Fetecau, C., Fetecau, C.: Decay of a potential vortex in a Maxwell fluid. Int. J. Non-Linear Mech. 38, 985–990 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Fetecau, C., Fetecau, C.: Starting solutions for some unsteady unidirectional flows of a second grade fluid. Int. J. Eng. Sci. 43, 781–789 (2005)CrossRefGoogle Scholar
  5. 5.
    Ayub, M., Rasheed, A., Hayat, T.: Exact flow of a third grade fluid past a porous plate using homotopy analysis method. Int. J. Eng. Sci. 41, 2091–2103 (2003)CrossRefGoogle Scholar
  6. 6.
    Hayat, T., Khan, M., Ayub, M.: On the explicit analytic solutions of an Oldroyd 6-constant fluid. Int. J. Eng. Sci. 42, 123–135 (2004)CrossRefGoogle Scholar
  7. 7.
    Hayat, T., Khan, M., Ayub, M.: Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnetic field. J. Math. Anal. Appl. 298, 225–244 (2004)MATHCrossRefGoogle Scholar
  8. 8.
    Fetecau, C., Fetecau, C.: A new exact solution for the flow of Maxwell fluid past an infinite plate. Int. J. Non-Linear Mech. 38, 423–427 (2003)MATHCrossRefGoogle Scholar
  9. 9.
    Tan, W.C., Masuoka, T.: Stokes first problem for second grade fluid in a porous half space. Int. J. Non-Linear Mech. 40, 515–522 (2005)MATHCrossRefGoogle Scholar
  10. 10.
    Siddiqui, A.M., Ahmed, M., Ghori, Q.K.: Thin film flow of non-Newtonian fluids on a moving belt. Chaos Solitons Fractals (2006) in pressGoogle Scholar
  11. 11.
    Liao, S.J.: On the proposed homotopy analysis technique for nonlinear problems and its applications, Ph.D. dissertation, Shanghai Jio Tong University, Shanghai, China (1992)Google Scholar
  12. 12.
    Liao, S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton, FL (2003)Google Scholar
  13. 13.
    Lyapunov, A.M.: General Problem on Stability of Motion. Taylors & Francis, London (1992) (English translation)Google Scholar
  14. 14.
    Karmishin, A.V., Zhukov, A.T., Kolosov, V.G.: Methods of Dynamics Calculation and Testing for Thin-Walled Structures. Mashinostroyenie, Moscow (1990) (In Russian)Google Scholar
  15. 15.
    Adomian, G.: Nonlinear stochastic differential equations. J. Math. Anal. Appl. 55, 441–452 (1976)MATHCrossRefGoogle Scholar
  16. 16.
    Liao, S.J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385, 101–128 (1999)MATHCrossRefGoogle Scholar
  17. 17.
    Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002)MATHCrossRefGoogle Scholar
  18. 18.
    Liao, S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003)MATHCrossRefGoogle Scholar
  19. 19.
    Liao, S.J., Cheung, K.F.: Homotopy analysis of nonlinear progressive waves in deep water. J. Eng. Math. 45, 105–116 (2003)MATHCrossRefGoogle Scholar
  20. 20.
    Hayat, T., Khan, M., Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid. Acta Mech. 168, 213–232 (2004)MATHCrossRefGoogle Scholar
  21. 21.
    Liao, S.J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate. Int. J. Heat Mass Trans. 48, 2529–2539 (2005)CrossRefGoogle Scholar
  22. 22.
    Liao, SJ.: An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate. Comm. Non-Linear Sci. Num. Simm. 11, 326–339 (2006)MATHCrossRefGoogle Scholar
  23. 23.
    Wu, W., Liao, S.J.: Solving solitary waves with discontinuity by means of the homotopy analysis method. Chaos Solitons Fractals 26, 177–185 (2005)MATHCrossRefGoogle Scholar
  24. 24.
    Wu, Y.Y., Wang, C., Liao, S.J.: Solving the one loop solution of the Vakhnenko equation by means of the homotopy analysis method. Chaos Solitons Fractals 23, 1733–1740 (2005)MATHCrossRefGoogle Scholar
  25. 25.
    Sajid, M., Hayat, T., Asghar, S.: On the analytic solution of steady flow of a fourth grade fluid. Phys. Lett. A 355, 18–24 (2006)CrossRefGoogle Scholar
  26. 26.
    He, J.H.: An approximation sol. technique depending upon an artificial parameter. Comm. Nonlinear Sci. Num. Simul. 3, 92–97 (1998)MATHCrossRefGoogle Scholar
  27. 27.
    Fitzpatrick, P.M.: Advanced Calculus. PWS Publishing Company, Boston, MA (1996)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.Physics Research DivisionPINSTECHIslamabadPakistan
  3. 3.COMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations