Nonlinear Dynamics

, Volume 49, Issue 3, pp 401–424 | Cite as

An analytical prediction of sliding motions along discontinuous boundary in non-smooth dynamical systems

Original Article


This paper presents a method for the analytical prediction of sliding motions along discontinuous boundaries in non-smooth dynamical systems. The methodology is demonstrated through investigation of a periodically forced linear oscillator with dry friction. The switching conditions for sliding motions in non-smooth dynamical systems are given. The generic mappings for the friction-induced oscillator are introduced. From the generic mappings, the corresponding criteria for the sliding motions are presented through the force product conditions. The analytical prediction of the onset and vanishing of the sliding motions is illustrated. Finally, numerical simulations of sliding motions are carried out to verify the analytical prediction. This analytical prediction provides an accurate prediction of sliding motions in non-smooth dynamical systems. The switching conditions developed in this paper are expressed by the total force of the oscillator, and the nonlinearity and linearity of the spring and viscous damping forces in the oscillator cannot change such switching conditions. Therefore, the achieved force criteria can be applied to the other dynamical systems with nonlinear friction forces processing a C 0-discontinuity.


Sliding motion Force product Non-smooth dynamical systems Sliding fragmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Filippov, A.F.: Differential equations with discontinuous right-hand side. Am. Math. Soc. Trans. Ser. 42(2), 199–231 (1964)Google Scholar
  2. 2.
    Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)Google Scholar
  3. 3.
    Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag, Berlin (1984)Google Scholar
  4. 4.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1989)Google Scholar
  5. 5.
    Luo, A.C.J.: A theory for non-smooth dynamical systems on connectable domains. Commun. Nonlinear Sci. Numer. Simulat. 10, 1–55 (2005)MATHCrossRefGoogle Scholar
  6. 6.
    Den Hartog, J.P.: Forced vibrations with Coulomb and viscous damping. Trans. Am. Soc. Mech. Eng. 53, 107–115 (1931)Google Scholar
  7. 7.
    Levitan, E.S.: Forced oscillation of a spring–mass system having combined Coulomb and viscous damping. J. Acoust. Soc. Am. 32, 1265–1269 (1960)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hundal, M.S.: Response of a base excited system with Coulomb and viscous friction. J. Sound Vib. 64, 371–378 (1979)MATHCrossRefGoogle Scholar
  9. 9.
    Shaw, S.W.: On the dynamic response of a system with dry-friction. J. Sound Vib. 108, 305–325 (1986)CrossRefGoogle Scholar
  10. 10.
    Feeny, B.F., Moon, F.C.: Chaos in a forced dry-friction oscillator: experiments and numerical modeling. J. Sound Vib. 170, 303–323 (1994)MATHCrossRefGoogle Scholar
  11. 11.
    Hinrichs, N., Oestreich, M., Popp, K.: Dynamics of oscillators with impact and friction. Chaos Solitons Fractals 8(4), 535–558 (1997)MATHCrossRefGoogle Scholar
  12. 12.
    Hinrichs, N., Oestreich, M., Popp, K.: On the modeling of friction oscillators. J. Sound Vib. 216(3), 435–459(1998)CrossRefGoogle Scholar
  13. 13.
    Natsiavas, S.: Stability of piecewise linear oscillators with viscous and dry friction dampping. J. Sound Vib. 217, 507–522 (1998)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Natsiavas, S., Verros, G.: Dynamics of oscillators with strongly nonlinear asymmetric damping. Nonlinear Dyn. 20, 221–246 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Leine, R.I., van Campen, D.H., De Kraker, A., Van Den Steen, L.: Stick–slip vibrations induced by alternate friction models. Nonlinear Dyn. 16, 41–54 (1998)MATHCrossRefGoogle Scholar
  16. 16.
    Leine, R.I., van Campen, D.H., van de Vrande, B.L.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23, 105–164 (2000)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Leine, R.I., van Campen, D.H.: Discontinuous bifurcations of periodic motions. Math. Comput. Model. 36, 259–273 (2002)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ko, P.L., Taponat, M.-C., Pfaifer, R.: Friction-induced vibration–-with and without external disturbance. Tribol. Int. 34, 7–24 (2001)CrossRefGoogle Scholar
  19. 19.
    Andreaus, U., Casini, P.: Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle. Int. J. Non-Linear Mech. 37, 117–133 (2002)MATHCrossRefGoogle Scholar
  20. 20.
    Thomsen, J.J., Fidlin, A.: Analytical approximations for stick–slip vibration amplitudes. Int. J. Non-Linear Mech. 38, 389–403 (2003)MATHCrossRefGoogle Scholar
  21. 21.
    Pilipchuk, V.N., Tan, C.A.: Creep–slip capture as a possible source of squeal during decelerating sliding. Nonlinear Dyn. 35, 258–285 (2004)CrossRefGoogle Scholar
  22. 22.
    Li, Y., Feng, Z.C.: Bifurcation and chaos in friction-induced vibration. Commun. Nonlinear Sci. Numer. Simulat. 9, 633–647 (2004)MATHCrossRefGoogle Scholar
  23. 23.
    van de Wouw, N., Leine, R.I.: Attractivity of equilibrium sets of systems with dry friction. Nonlinear Dyn. 35, 19–39 (2004)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Luo, A.C.J., Gegg, B.C.: On the mechanism of stick and non-stick periodic motion in a forced oscillator including dry-friction. In: Proceedings of the ASME International Mechanical Engineering Congress & Exposition, Anaheim, CA, November 13–19 IMECE2004-59218 (2004)Google Scholar
  25. 25.
    Luo, A.C.J., Gegg, B.C.: Stick and non-stick periodic motions in a periodically forced, linear oscillator with dry friction. J. Sound Vib. 291, 132–168 (2006)Google Scholar
  26. 26.
    Luo, A.C.J., Gegg, B.C.: Grazing phenomena in a periodically forced, linear oscillator with dry friction. Commun. Nonlinear Sci. Numer. Simulat. 11, 711–802 (2006)Google Scholar
  27. 27.
    Luo, A.C.J.: Imaginary, sink and source flows in the vicinity of the separatrix of non-smooth dynamic system. J. Sound Vib. 285, 443–456 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringSouthern Illinois University, EdwardsvilleEdwardsvilleUSA

Personalised recommendations