Advertisement

Nonlinear Dynamics

, Volume 49, Issue 1–2, pp 131–150 | Cite as

Unscented Kalman filtering for nonlinear structural dynamics

  • Stefano Mariani
  • Aldo Ghisi
Original Article

Abstract

Joint estimation of unknown model parameters and unobserved state components for stochastic, nonlinear dynamic systems is customarily pursued via the extended Kalman filter (EKF). However, in the presence of severe nonlinearities in the equations governing system evolution, the EKF can become unstable and accuracy of the estimates gets poor. To improve the results, in this paper we account for recent developments in the field of statistical linearization and propose an unscented Kalman filtering procedure. In the case of softening single degree-of-freedom structural systems, we show that the performance of the unscented Kalman filter (UKF), in terms of state tracking and model calibration, is significantly superior to that of the EKF.

Keywords

Kalman filter Nonlinear structural dynamics Parameter identification Statistical linearization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrate, S.: Impact on Composite Structures. Cambridge University Press, Cambridge, UK (1998)Google Scholar
  2. 2.
    Corigliano, A.: Damage and fracture mechanics techniques for composite structures. In: Comprehensive Structural Integrity, Milne, I., Ritchie, R.O., Karihaloo, B. (eds.), vol. 3, chap. 9, pp. 459–539. Elsevier, Amsterdam (2003)Google Scholar
  3. 3.
    Nemat-Nasser, S.: Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials. Cambridge University Press, Cambridge, UK (2004)MATHGoogle Scholar
  4. 4.
    Toropov, V.V., Yoshida, F., van der Giessen, E.: Material parameter identification for large deformation plasticity models. In: Material Identification Using Mixed Numerical Experimental Methods, Sol, H., Oomens, C.W.J. (eds.), pp. 81–92. Kluwer Academic, Dordrecht (1997)Google Scholar
  5. 5.
    Mahnken, R., Stein, E.: Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations. Int. J. Plast. 12, 451–479 (1996)MATHCrossRefGoogle Scholar
  6. 6.
    Mahnken, R., Stein, E.: A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput. Methods Appl. Mech. Eng. 136, 225–258 (1996)MATHCrossRefGoogle Scholar
  7. 7.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME J. Basic Eng. 82D, 35–45 (1960)Google Scholar
  8. 8.
    Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. ASME J. Basic Eng. 83D, 95–108 (1961)MathSciNetGoogle Scholar
  9. 9.
    Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge, MA (1974)Google Scholar
  10. 10.
    Ljung, L.: Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Autom. Control AC-24, 36–50 (1979)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Ljung, L.: System Identification. Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs, NJ (1999)Google Scholar
  12. 12.
    Reif, K., Günther, S., Yaz, E., Unbehauen, R.: Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans. Autom. Control 44, 714–728 (1999)MATHCrossRefGoogle Scholar
  13. 13.
    Corigliano, A., Mariani, S.: Simulation of damage in composites by means of interface models: parameter identification. Composites Sci. Technol. 61, 2299–2315 (2001)CrossRefGoogle Scholar
  14. 14.
    Corigliano, A., Mariani, S.: Parameter identification in explicit structural dynamics: performance of the extended Kalman filter. Comput. Methods Appl. Mech. Eng. 193, 3807–3835 (2004)MATHCrossRefGoogle Scholar
  15. 15.
    Mariani, S., Corigliano, A.: Impact induced composite delamination: state and parameter identification via joint and dual extended Kalman filters. Comput. Methods Appl. Mech. Eng. 194, 5242–5272 (2005)MATHCrossRefGoogle Scholar
  16. 16.
    Corigliano, A., Mariani, S.: The extended Kalman filter for model identification in impact dynamics. In: Computational Plasticity VII. Fundamentals and Applications, Owen, D.R.J., Oñate, E., Suárez, B. (eds.), CIMNE, Barcelona, Spain (2003)Google Scholar
  17. 17.
    Wan, E.A., Nelson, A.T.: Dual extended Kalman filter methods. In: Kalman Filtering and Neural Networks, Haykin, S. (ed.), pp. 123–173. Wiley, New York (2001)Google Scholar
  18. 18.
    van der Merwe, R., Wan, E.A.: Sigma-point Kalman filters for probabilistic inference in dynamic state—space models. In: Proceedings of the Workshop on Advances in Machine Learning, Montreal, Canada (2003)Google Scholar
  19. 19.
    Julier, S.J., Uhlmann, J.K.: A general method for approximating nonlinear transformations of probability distributions. Technical report, RRG, Department of Engineering Science, University of Oxford, Oxford (1996)Google Scholar
  20. 20.
    Julier, S.J., Uhlmann, J., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45, 477–482 (2000)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Wan, E.A., van der Merwe, R.: The unscented Kalman filter. In: Kalman Filtering and Neural Networks, Haykin, S. (ed.), pp. 221–280. Wiley, New York (2001)Google Scholar
  22. 22.
    Sitz, A., Schwarz, U., Kurths, J., Voss, H.U.: Estimation of parameters and unobserved components for nonlinear systems from noisy time series. Phys. Rev. E 66, 016210 (2002)CrossRefGoogle Scholar
  23. 23.
    Corigliano, A., Mariani, S.: Parameter identification of a time-dependent elastic-damage interface model for the simulation of debonding in composites. Composites Sci. Tech. 61, 191–203 (2001)CrossRefGoogle Scholar
  24. 24.
    Lemaitre, J.: A Course on Damage Mechanics. Springer, Berlin Heidelberg New York (1996)MATHGoogle Scholar
  25. 25.
    Corigliano, A.: Formulation, identification and use of interface elements in the numerical analysis of composite delamination. Int. J. Solids Struct. 30, 2779–2811 (1993)MATHCrossRefGoogle Scholar
  26. 26.
    Corigliano, A., Allix, O.: Some aspects of interlaminar degradation in composites. Comput. Methods Appl. Mech. Eng. 185, 203–224 (2000)MATHCrossRefGoogle Scholar
  27. 27.
    Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng. Struct. Dyn. 5, 283–292 (1977)CrossRefGoogle Scholar
  28. 28.
    Hughes, T.J.R.: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Dover, New York (2000)Google Scholar
  29. 29.
    Romero, I.: Stability analysis of linear multistep methods for classical elastodynamics. Comput. Methods Appl. Mech. Eng. 193, 2169–2189 (2004)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    30. Kopp, R.E., Orford, R.J.: Linear regression applied to system identification for adaptive control systems. AIAA J. 1, 2300–2306 (1963)MATHCrossRefGoogle Scholar
  31. 31.
    Silva, C.E.K., Hinton, E., Vaz, L.E., Sienz, J.: 2D shape optimization with rate-independent elastoplasticity. In: Computational Plasticity. Fundamentals and Applications, Owen, D.R.J., Oñate, E., Hinton, E. (eds.), vol. 1, pp. 836–854. CIMNE, Barcelona, Spain (1997)Google Scholar
  32. 32.
    Corigliano, A., Mariani, S., Orsatti, B.: Identification of Gurson—Tvergaard material model parameters via Kalman filtering technique — I. Theory. Int. J. Fracture 104, 349–373 (2000)CrossRefGoogle Scholar
  33. 33.
    Bittanti, S., Maier, G., Nappi, A.: Inverse problems in structural elastoplasticity:AKalman filter approach. In: Plasticity Today. Modelling, Methods and Applications, Sawczuk, A., Bianchi, G. (eds.), pp. 311–329. Elsevier, Amsterdam (1984)Google Scholar
  34. 34.
    Ito, K., Xiong, K.: Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 45, 910–927 (2000)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Lefebvre, T., Bruyninckx, H., De Schutter, J.: Kalman filters for nonlinear systems: a comparison of performance. Int. J. Control 77, 639–653 (2004)MATHCrossRefGoogle Scholar
  36. 36.
    Julier, S.J., Uhlmann, J., Durrant-Whyte, H.F.: A new approach for filtering nonlinear systems. In: Proceedings of the American Control Conference, Seattle, WA, pp. 1628–1632 (June 1995)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria StrutturalePolitecnico di MilanoMilanItaly

Personalised recommendations