Nonlinear Dynamics

, Volume 48, Issue 3, pp 275–284 | Cite as

Instrumental variables approach to identification of a class of MIMO Wiener systems

  • Andrzej Janczak
Original Article


A new approach to identification of multi-input multi-output (MIMO) Wiener systems using the instrumental variables method is presented. It is assumed that static nonlinear elements are invertible and their inverse characteristics can be expressed or approximated by polynomials of known orders. It is also assumed that the linear part of the Wiener system can be represented by a matrix polynomial form. Based on these assumptions, the Wiener system is transformed introducing a new parameterization and its parameters are estimated using a linear-in-parameters model. To solve the problem of non-consistency of least squares parameter estimates, an instrumental variables method is employed. A numerical example is included to show the effectiveness and the practical feasibility of the presented approach.


Instrumental variables method Linear regression Multi-input multi-output nonlinear systems Nonlinear system identification Parameter estimation Wiener models 



discrete Fourier transform


instrumental variables


least squares


multi-input multi-output


power hydrogen


root mean square error


single-input single-output


signal-to-noise ratio


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Duwaish, H., Karim, M.N., Chandrasekar, V.: Use of multilayer feedforward neural networks in identification and control of Wiener model. IEE Proc. Control Theory Appl. 143, 225–258 (1996)CrossRefGoogle Scholar
  2. 2.
    Bai, E.-W.: Identifcation of linear systems with hard input nonlinearities of known structure. Automatica 38, 853–860 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Bai, E.-W.: Frequency domain identifcation of Wiener models. Automatica 39, 1521–1530 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Billings, S.A., Fakhouri, S.Y.: Theory of separable processes with applications to the identification of nonlinear systems. Proc. IEE 125, 1051–1058 (1977)MathSciNetGoogle Scholar
  5. 5.
    Billings, S.A., Fakhouri, S.Y.: Identification of systems containing linear dynamic and static nonlinear elements. Automatica 18, 15–26 (1982)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bloemen, H.H.J., Chou, C.T., Boom, T.J.J., Verdult, V., Verhaegen, M., Backx, T.C.: Wiener model identification and predictive control for dual composition control of a distillation column. J. Process Control 11, 601–620 (2001)CrossRefGoogle Scholar
  7. 7.
    Gómez, J.C., Baeyens, E.: Identification of block-oriented nonlinear systems using orthonormal bases. J. Process Control 14, 685–697 (2004)CrossRefGoogle Scholar
  8. 8.
    Greblicki, W.: Nonparametric identification of Wiener systems by orthogonal series. IEEE Trans. Autom. Control 39, 2077–2086 (1994)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Greblicki, W.: Recursive identification of Wiener systems. Int. J. Appl. Math Comput. Sci. 11, 977–991 (2001)MATHMathSciNetGoogle Scholar
  10. 10.
    Janczak, A.: A comparison of four gradient learning algorithms for neural network Wiener models. Int. J. Syst. Sci. 34, 21–35 (2003)MATHCrossRefGoogle Scholar
  11. 11.
    Janczak, A.: Instrumental variables approach to identification of polynomial Wiener systems. In: Proceedings of the European Control Conference ECC'03, Cambridge, UK (2003)Google Scholar
  12. 12.
    Janczak, A.: Identification of nonlinear systems using neural networks and polynomial models. A block-oriented approach. Lecture Notes in Control and Information Sciences, vol. 310. Springer-Verlag (2005)Google Scholar
  13. 13.
    Kalafatis, A.D., Arifin, N., Wang, L., Cluett, W.R.: A new approach to the identification of pH processes based on the Wiener model. Chem. Eng. Sci. 50, 3693–3701 (1995)CrossRefGoogle Scholar
  14. 14.
    Kalafatis, A.D., Wang, L., Cluett, W.R.: Identification of Wiener-type non-linear systems in a noisy environment. Int. J. Control 66, 923–941 (1997)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kalafatis, A.D., Wang, L., Cluett, W.R.: Linearizing feedforward-feedback control of pH processes based on Wiener model. J. Proc. Control 15, 103–112 (2005)CrossRefGoogle Scholar
  16. 16.
    Kalafatis, A.D., Wang, L., Cluett, W.R.: Identification of time-varying pH processes using sinusoidal signals. Automatica 41, 685–691 (2005)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kang, H.W., Cho, Y.S., Youn, D.H.: Adaptive precomensation of Wiener systems. IEEE Trans. Signal Process. 46, 2825–2829 (1998)CrossRefGoogle Scholar
  18. 18.
    Ling, W.-M., Rivera, D.: Nonlinear black-box identification of distillation column models—design variable selection for model performance enhancement. Int. J. Appl. Math. Comput. Sci. 8, 794–813 (1998)Google Scholar
  19. 19.
    Ljung, L.: System Identification. Theory for the User. Prentice Hall, Englewood Cliffs, NJ,(1999)Google Scholar
  20. 20.
    Pajunen, G.: Adaptive control of Wiener type nonlinear systems. Automatica 28, 781–785 (1992)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Pearson, R.K., Pottmann, M.: Gray-box identification of block-oriented non-linear models. J. Process Control 10, 301–315 (2000)CrossRefGoogle Scholar
  22. 22.
    Söderström, T., Stoica, P.: System Identification. Prentice Hall, Englewood Cliffs, NJ,(1994)Google Scholar
  23. 23.
    Verhaegen, M., Westwick, D.: Identifying MIMO Wiener systems using subspace model identyfication methods. Signal Process. 52, 235–258 (1996)MATHCrossRefGoogle Scholar
  24. 24.
    Visala, A., Pitkänen, H., Aarne, H.: Modeling of chromatographic separation process with Wiener-MLP representation. J. Process Control 78, 443–458 (2001)Google Scholar
  25. 25.
    Vörös, J.: Parameter identification of Wiener systems with discontinuous nonlinearities. Syst. Control Lett. 44, 363–372 (2001)MATHCrossRefGoogle Scholar
  26. 26.
    Wigren, T.: Recursive prediction error identification algorithm using the nonlinear Wiener model. Automatica 29, 1011–1025 (1993)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Wigren, T.: Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model. IEEE Trans. Autom. Control 39, 2191–2206 (1994)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraulZielona GóraPoland

Personalised recommendations