Advertisement

Nonlinear Dynamics

, Volume 48, Issue 4, pp 341–360 | Cite as

Parametric identification of nonlinear systems using multiple trials

  • M. D. Narayanan
  • S. Narayanan
  • Chandramouli Padmanabhan
Original Article

Abstract

It is observed that the harmonic balance (HB) method of parametric identification of nonlinear system may not give right identification results for a single test data. A multiple-trial HB scheme is suggested to obtain improved results in the identification, compared with a single sample test. Several independent tests are conducted by subjecting the system to a range of harmonic excitations. The individual data sets are combined to obtain the matrix for inversion. This leads to the mean square error minimization of the entire set of periodic orbits. It is shown that the combination of independent test data gives correct results even in the case where the individual data sets give wrong results.

Keywords

Harmonic balance Method of least squares Multiple trials Nonlinear system identification 

Abbreviations

HB

Harmonic balance

MDOF

Multidegree of freedom

DFT

Discrete Fourier transform

FFT

Fast Fourier transform

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Urabe, M., Reiter, A.: Numerical computation of nonlinear forced oscillations by Galerkin's procedure. J. Math. Anal. Appl. 14, 107–140 (1966)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Masri, S.F., Caughey, T.K.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46, 433–447 (1979)MATHGoogle Scholar
  3. 3.
    Masri, S.F., Sassi, H., Caughey, T.K.: Nonparametric identification of nearly arbitrary nonlinear systems. J. Appl. Mech. 49, 619–628 (1982)MATHCrossRefGoogle Scholar
  4. 4.
    Yang, Y., Ibrahim, S.R.: A nonparametric identification technique for a variety of discrete nonlinear vibrating systems. J. Vib. Acoust. Reliab. Des. 107, 60–66 (1985)Google Scholar
  5. 5.
    Crawley, E.F., Aubert, A.C.: Identification of nonlinear structural elements by force state mapping. AIAA J. 24, 155–162 (1986)CrossRefGoogle Scholar
  6. 6.
    Mohammad, K.S., Worden, K., Tomlinson, G.R.: Direct parameter estimation for linear and nonlinear structures. J. Sound Vib. 152, 471–499 (1992)MATHCrossRefGoogle Scholar
  7. 7.
    Perona, P., Porporato, A., Ridolfi, L.: On the trajectory method for the reconstruction of differential equations from time series. Nonlinear Dyn. 23, 13–33 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Yasuda, K., Kawamura, S., Watanabe, K.: Identification of nonlinear multi-degree-of-freedom systems (presentation of an identification technique). JSME Int. J., Ser. III, 31, 8–14 (1988)MathSciNetGoogle Scholar
  9. 9.
    Yuan, C.M., Feeny, B.F.: Parametric identification of chaotic systems. J. Vib. Control 4, 405–426 (1998)Google Scholar
  10. 10.
    Narayanan, M.D., Narayanan, S., Padmanabhan, C.: Parametric identification of a nonlinear system using multi-harmonic excitation. In: Proceedings VETOMAC-3 & ACSIM-2004 Conference, vol. 2, pp 706–714, New Delhi, India (2004)Google Scholar
  11. 11.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. The Johns Hopkins University Press, Baltimore, MD (1989)MATHGoogle Scholar
  12. 12.
    Kundert, K., Sorkin, G.B., Vincentelli, A.S.: Applying harmonic balance to almost-periodic circuits. IEEE Trans. Microw. Theory Tech. 36, 366–378 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, B.V. 2007

Authors and Affiliations

  • M. D. Narayanan
    • 1
  • S. Narayanan
    • 1
  • Chandramouli Padmanabhan
    • 1
  1. 1.Machine Design Section, Department of Mechanical EngineeringIndian Institute of TechnologyChennaiIndia

Personalised recommendations